Please wait a minute...
高级检索
高原气象  2017, Vol. 36 Issue (5): 1422-1432    DOI: 10.7522/j.issn.1000-0534.2016.00110
论文     
沙尘暴过程中沙尘气溶胶对气象场的影响
周旭1,2, 张镭1, 陈丽晶1, 郭琪1
1. 兰州大学大气科学学院/半干旱气候变化教育部重点实验室, 兰州 730000;
2. 中国气象局/云雾物理环境重点开放实验室, 北京 100081
Influence of the Dust Aerosols on Meteorological Fields during Dust Storm
ZHOU Xu1,2, ZHANG Lei1, CHEN Lijing1, GUO Qi1
1. Key Laboratory of Semi-Arid Climate Changes with the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China;
2. Key Laboratory for Cloud Physics, Chinese Academy of Meteorological Sciences, Beijing 100081, China
 全文: PDF(7807 KB)   HTML
摘要: 沙尘暴是干旱区常见的天气现象,沙尘暴天气过程中,边界层内气象要素发生剧烈的变化。利用WRF/Chem模式结合Shao 2004的参数化方案,模拟了发生在2010年4月24-26日的一次沙尘天气过程,通过控制沙尘气溶胶是否排放到大气中,对比分析沙尘暴过程中沙尘气溶胶对边界层中气象要素的影响。结果发现,在沙尘暴过程中,夜间在沙尘层以下,沙尘气溶胶具有加热大气的作用,使得温度升高,最大值约1.8 K,这种"保温"作用还与地表反照率有关,反照率越大"保温"作用越强;而在沙尘气溶胶层内的中上部具有降温的作用,温度降低,最大值约3 K。夜间沙尘气溶胶能够抬升边界层高度,最大达1000 m;白天则降低,可降低700 m;沙尘气溶胶导致水平风速增大约1.0 m·s-1,使垂直风速在沙尘层下增大,在沙尘层以上减小。
关键词: 沙尘暴沙尘气溶胶数值模拟边界层气象要素    
Abstract: Dust storm is a normal seen weather phenomenon occuring in the dry-land.During the dust storm process, the key factors of boundary layer will witness a dramatically change.By using the combination of WRF/Chem modelling and parametric scheme given by Y.Shao in 2004, simulated a dust weather process happened on 24-26 April 2010.By controlling whether the dust aerosol is emitted into the atmosphere, compared and analyzed the effect of boundary layer atmospheric factors during the dust storm process.We found that in the night under the dust layer, the dust aerosol has the effection of heating the atmosphere, the maximum value is 1.8 K.This "heating" effect is related to the surface albedo also:The larger of the albedo the stronger of the "heating" effect.In the middle-up layer the dust aerosol have a "cooling" effect, the maximum of temperature decreased value is 3 K.Dust aerosol can raise the boundary layer in the night, 1000 meters to the maximum, opposite effect during the day time is approximate to 700 meters.Dust aerosols results in the horizontal wind speed up, about 1.0 m·s-1.Dust aerosol can also increase the vertical wind speed blow dust aerosols layer, but decrease above the dust layer.
Key words: Dust storm    Dust aerosol    Numerical modeling    Boundary layer    Meteorological parameters
收稿日期: 2016-04-06 出版日期: 2017-10-20
:  P421  
基金资助: 国家重大科学研究计划项目(2012CB955302)
通讯作者: 张镭.E-mail:zhanglei@lzu.edu.cn     E-mail: zhanglei@lzu.edu.cn
作者简介: 周旭(1984-),男,安徽宿州人,博士研究生,主要从事起沙参数化、沙尘气溶胶数值模拟研究,E-mail:xzhou11@lzu.edu.cn
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
周旭
张镭
陈丽晶
郭琪

引用本文:

周旭, 张镭, 陈丽晶, 郭琪. 沙尘暴过程中沙尘气溶胶对气象场的影响[J]. 高原气象, 2017, 36(5): 1422-1432.

ZHOU Xu, ZHANG Lei, CHEN Lijing, GUO Qi. Influence of the Dust Aerosols on Meteorological Fields during Dust Storm. PLATEAU METEOROLOGY, 2017, 36(5): 1422-1432.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2016.00110        http://www.gyqx.ac.cn/CN/Y2017/V36/I5/1422

Choobari O A, Zawar-Reza P, Sturman A. 2012. Feedback between windblown dust and planetary boundary-layer characteristics:Sensitivity to boundary and surface layer parameterizations[J]. Atmos Environ, 61(12):294-304.
Chung C E, Zhang G J. 2004. Impact of absorbing aerosol on precipitation:Dynamic aspects in association with convective available potential energy and convective parameterization closure and dependence on aerosol heating profile[J]. J Geophys Res Atmos, 109(D22):2285-2311.
Forster P, Ramaswamy V, Artaxo P, et al. 2007. Changes in atmospheric constituents and in radiative forcing[M]. Cambridge:Cambridge University Press.
Han Z, Li J, Guo W, et al. 2013. A study of dust radiative feedback on dust cycle and meteorology over East Asia by a coupled regional climate-chemistry-aerosol model[J]. Atmos Environ, 68(1):54-63.
Hansell R A, Tsay S C, Ji Q, et al. 2010. An assessment of the surface longwave direct radiative effect of Airborne Saharan dust during the NAMMA field campaign[J]. J Atmos Sci, 67(4):1048-1065.
Haywood J, Boucher O. 2000. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols:A review[J]. Rev Geophys, 38(4):513-543.
Heinold B, Tegen I, Schepanski K, et al. 2008. Dust radiative feedback on Saharan boundary layer dynamics and dust mobilization[J]. Geophys Res Lett, 35(20):525-530.
Jacobson M Z, Kaufman Y J. 2006. Wind reduction by aerosol particles[J]. Geophys Res Lett, 33(24):194-199.
Jish P P, Stenchikov G, Kalenderski S, et al. 2015. The impact of dust storms on the Arabian Peninsula and the Red Sea[J]. Atmospheric Chemistry & Physics Discussions, 15(1):199-222.
Liao H, Seinfeld J H. 1998. Radiative forcing by mineral dust aerosols:sensitivity to key variables[J]. J Geophys Res, 103(1033):31637-31646.
Lorenzo C, Kevin G, Helmut K. 2010. Radiative heating rates profiles associated with a springtime case of Bodélé and Sudan dust transport over West Africa[J]. Atmospheric Chemistry & Physics & Discussions, 10(17):8131-8150.
Miller R L, Tegen I, Perlwitz J. 2004. Surface radiative forcing by soil dust aerosols and the hydrologic cycle[J]. J Geophys Res Atmos, 109(D4):361-375.
Miller R L, Tegen I. 1998. Climate response to soil dust aerosols[J]. J Climate, 11(12):3247-3267.
Miller R L, Tegen I. 1999. Radiative forcing of a tropical direct circulation by soil dust aerosols[J]. J Atmos Sci, 56(14):2403-2433.
Rémy S, Benedetti A, Bozzo A, et al. 2015. Feedbacks of dust and boundary layer meteorology during a dust storm in the eastern Mediterranean[J]. Atmospheric Chemistry & Physics, 15(22):12909-12933.
Stanelle T, Vogel B, Vogel H, et al. 2010. Feedback between dust particles and atmospheric processes over West Africa during dust episodes in March 2006 and June 2007[J]. Atmospheric Chemistry & Physics Discussions, 10(22):7553-7599.
Xu Y, Wang H, Hong L, et al. 2010. Simulation of dust aerosol radiative feedback using the GMOD:2. Dust-climate interactions[J]. J Geophys Res, 115(D4):288-303.
Shao Yaping. 2004. Simplification of a dust emission scheme and comparison with data[J]. J Geophys Res, 109(D10):D10202. DOI:10. 1029/2003JD004372.
Zhu A, Ramanathan V, Li F, et al. 2007. Dust plumes over the Pacific, Indian, and Atlantic oceans:Climatology and radiative impact[J]. Far Eastern Quarterly, 112(D16):355-362.
常倬林, 崔洋, 张武, 等. 2015. 宁夏典型沙尘天气条件下气溶胶分布特征研究[J]. 高原气象, 34(4):1049-1056. Chang Zhuolin, Cui Yang, Zhang Wu, et al. 2015. Temporal and spatial distribution of atmospheric aerosol in typical dusty weather over Ningxia[J]. Plateau Meteor, 34(4):1049-1056. DOI:10. 7522/j. issn. 1000-0534. 2014. 00040.
郭萍萍, 殷雪莲, 刘秀兰, 等. 2011. 河西走廊中部一次特强沙尘暴天气特征及预报方法研究[J]. 干旱气象, 29(1), 110-115. Guo Pingping, Yin Xuelian, Liu Xiulan, et al. 2011. Analysis of a heavy dust storm occurred in middle part of Hexi Corridor and forecast methods study for dust storm weather[J]. J Arid Meteor, 29(1), 110-115.
金莉莉, 何清, 李振杰, 等. 2014. 沙尘对南疆沙漠腹地太阳辐射的影响[J]. 高原气象, 33(5):1403-1410. Jin Lili, He Qing, Li Zhenjie, et al. 2014. Influence of sand-dust on solar radiation in the hinterland of Taklimakan Desert[J]. Plateau Meteor, 33(5):1403-1410. DOI:10. 7522/j. issn. 1000-0534. 2013. 00061.
柳丹, 张武, 陈艳, 等. 2014. 基于卫星遥感的中国西北地区沙尘天气发生机理及传输路径分析[J]. 中国沙漠, 34(6):1605-1616. Liu Dan, Zhang Wu, Chen Yan, et al. 2014. Analysis of the mechanism and transmission of dust in Northwest China based on satellite remote-sensing data[J]. J Desert Res, 34(6):1605-1616.
沈洁, 李耀辉, 胡田田, 等. 2014. 一次特强沙尘暴成因及近地面要素脉动特征[J]. 中国沙漠, 34(2):507-517. Shen Jie, Li Yaohui, Hu Tiantian, et al. 2014. Causes and surface elements characteristics of a heavy sand-storm in 2010 in Minqin of Gansu, China[J]. J Desert Res 34(2):507-517.
苏婧. 2010. 中国西北地区沙尘气溶胶辐射强迫效应的研究[D]. 兰州:兰州大学. Su Jing. 2010. Radiative forcing effect of dust aerosol over Northwestern China[D]. Lanzhou:Lanzhou University.
宿兴涛, 许丽人, 魏强, 等. 2016. 东亚地区沙尘气溶胶对降水的影响研究[J]. 高原气象, 35(1):211-219. Su Xingtao, Xu Liren, Wei Qiang, et al. 2016. Study of impacts of dust aerosol on precipitation over East Asia[J]. Plateau Meteor, 35(1):211-219. DOI:10. 7522/j. issn. 1000-0534. 2014. 00091.
宿兴涛, 王汉杰, 宋帅, 等. 2011. 近10年东亚沙尘气溶胶辐射强迫与温度响应[J]. 高原气象, 30(5):1300-1307. Su Xingtao, Wang Hanjie, Song Suai, et al. 2011. Radiative force and temperature response of dust aerosol over East Asia in recent decade[J]. Plateau Meteor, 30(5):1300-1307.
吴成来, 林朝晖. 2014. WRF/Chem 模式中两种起沙参数化方案对东亚地区一次强沙尘暴过程模拟的影响[J]. 气候与环境研究, 19(4):419-436. Wu Chenglai, Lin Zhaohui. 2014. Impact of two different dust emission schemes on the simulation of a severe dust storm in East Asia using the WRF/Chem Model[J]. Climatic Environ Res, 19(4):419-436.
徐建芬, 陶健红, 杨民, 等. 2001. 2000年4月12日特强沙尘暴天气分析[J]. 气象, 27(6):22-26. Xu Jianfen, Tao Jianhong, Yang Min, et al. 2001. An analysis of strong sandstorm on 12th April[J]. Meteor Mon, 27(6):22-26.
衣娜娜. 2016. 中国西北干旱半干旱地区沙尘气溶胶辐射特性[D]. 兰州:兰州大学. Yi Nana. 2016. Dust aerosol radiative property over arid and semi-arid region of Northwest China[D]. Lanzhou:Lanzhou University.
岳平, 牛生杰, 刘晓云. 2008. 浑善达克沙地春季沙尘暴期间沙尘启动及传输特性研究[J]. 中国沙漠, 28(2):227-230. Yue Ping, Niu Shengjie, Liu Xiaoyun. 2008. Dust emission and transmission during spring sand-dust storm in Hunshandake Sand-land[J]. J Desert Res, 28(2):227-230.
岳平, 牛生杰, 张强. 2008. 民勤一次沙尘暴的观测分析[J]. 高原气象, 27(2):401-407. Yue Ping, Niu Shengjie, Zhang Qiang. 2008. Observation and analysis of a dust storm in Minqin[J]. Plateau Meteor, 27(2):401-407.
赵旋, 李耀辉, 康富贵, 等. 2012. "4·24"民勤特强沙尘暴过程初步分析[J]. 干旱区资源与环境, 26(6):40-46. Zhao Xuan, Li Yaohui, Kang Fugui, et al. 2012. Analysis on the strong sandstorm in Minqin on April 24, 2010[J]. Journal of Arid Land Resources and Environment, 26(6):40-46.
周碧, 张镭, 隋兵, 等. 2014. 利用激光雷达探测兰州地区气溶胶的垂直分布[J]. 高原气象, 33(6):1545-1550. Zhou Bi, Zhang Lei, Sui Bing, et al. 2014. Detection of aerosol vertical distribution using lidar in Lanzhou District[J]. Plateau Meteor, 33(6):1545-1550. DOI:10. 7522/j. issn. 1000-0534. 2013. 00135.
周旭, 吴成来, 林朝晖, 等. 2011. 沙尘模式地表起沙参数不确定性分析[J]. 中国沙漠, 31(3):575-582. Zhou Xu, Wu Chenglai, Lin Zhaohui, et al. 2011. Uncertainty analysis of surface dust emission parameters of a dust model[J]. J Desert Res, 31(3):575-582.
周旭. 2016. 中国西北地区沙尘气溶胶及其对气象场的影响[D]. 兰州:兰州大学. Zhou Xu. 2016. Dust aerosol and its effects on the meterological fields in Northwest China[D]. Lanzhou:Lanzhou University.
[1] 王梦旖, 谭涌波, 师正, 刘俊, 于梦颖, 郑天雪. 大气冰核谱对雷暴云微物理过程及起电影响的数值模拟[J]. 高原气象, 2019, 38(3): 593-603.
[2] 苏彦入, 吕世华, 范广洲. 青藏高原夏季大气边界层高度与地表能量输送变化特征分析[J]. 高原气象, 2018, 37(6): 1470-1485.
[3] 王倩茹, 范广洲, 葛非, 程译萱, 朱伊. 基于CERA-20C资料青藏高原边界层高度日变化气候特征分析[J]. 高原气象, 2018, 37(6): 1486-1498.
[4] 刘郁珏, 苗世光, 胡非, 刘玉宝. 冬奥会小海坨山赛区边界层风场大涡模拟研究[J]. 高原气象, 2018, 37(5): 1388-1401.
[5] 周荣卫, 何晓凤. 新疆哈密复杂地形风场的数值模拟及特征分析[J]. 高原气象, 2018, 37(5): 1413-1427.
[6] 许建玉. 鄂东暖区暴雨个例的高分辨率模拟对边界层方案的敏感性[J]. 高原气象, 2018, 37(5): 1313-1324.
[7] 华雯丽, 韩颖, 乔瀚洋, 王天河, 黄忠伟, 闭建荣, 周天. 敦煌沙尘气溶胶质量浓度垂直特征个例分析[J]. 高原气象, 2018, 37(5): 1428-1439.
[8] 栾澜, 孟宪红, 吕世华, 韩博, 李照国, 赵林, 李瑞青. 青藏高原土壤湿度触发午后对流降水模拟试验研究[J]. 高原气象, 2018, 37(4): 873-885.
[9] 顾婷婷, 李晓丽, 刘丹妮, 潘娅英. 舟山跨海大桥一次强冷空气过程的精细化风场模拟[J]. 高原气象, 2018, 37(4): 1074-1082.
[10] 章焕, 范广洲, 张永莉, 赖欣. 青藏高原土壤湿度对一例高原涡影响的数值模拟[J]. 高原气象, 2018, 37(4): 886-898.
[11] 李宏毅, 肖子牛, 朱玉祥. 藏东南地区草地下垫面湍流通量和辐射平衡各分量的变化特征[J]. 高原气象, 2018, 37(4): 923-935.
[12] 张建涛, 何清, 王敏仲, 金莉莉. 塔克拉玛干沙漠腹地夜间稳定边界层观测个例分析[J]. 高原气象, 2018, 37(3): 826-836.
[13] 苏东生, 胡秀清, 文莉娟, 赵林, 李照国. 青海湖热力状况对气候变化响应的数值研究[J]. 高原气象, 2018, 37(2): 394-405.
[14] 罗雄, 李国平. 一次高原切变线过程的数值模拟与阶段性结构特征[J]. 高原气象, 2018, 37(2): 406-419.
[15] 程海艳, 余晔, 陈晋北, 姚惇, 解晋, 李江林. 大气红外探测器(AIRS)温、湿廓线反演产品及边界层高度在黄土高原的验证[J]. 高原气象, 2018, 37(2): 432-442.
img

QQ群聊

img

官方微信