Please wait a minute...
高级检索
高原气象  2018, Vol. 37 Issue (2): 349-357    DOI: 10.7522/j.issn.1000-0534.2017.00048
论文     
雅鲁藏布江流域NDVI对高程与降水的相依性研究
刘晓婉1,2, 彭定志1,2, 徐宗学1,2
1. 北京师范大学水科学研究院, 北京 100875;
2. 城市水循环与海绵城市技术北京重点实验室, 北京 100875
Variability of NDVI with Elevation and Precipitation in Yarlung Zangbo River Basin
LIU Xiaowan1,2, PENG Dingzhi1,2, XU Zongxue1,2
1. College of Water Sciences, Beijing Normal University, Beijing 100875, China;
2. Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, Beijing 100875, China
 全文: PDF(2876 KB)  
摘要: 地形起伏与降水分布不均是植被空间分布差异的主要成因。西藏自治区雅鲁藏布江流域具有显著的高程差异,研究以NDVI和相应的降水及高程数据,统计分析NDVI随高程变化的分布规律,并结合滑动t突变检验与Pearson相关分析对其分布形态进行诊断。结果表明:(1)NDVI对高程具有高度依赖性,基本呈现随高程增加而线性减小的变化规律,NDVI随高程变化的减幅约-0.000 18 m-1,其中3 003 m以下和5 843 m以上区域内NDVI值随高程增加呈线性下降形态,而高程在3 003~5 843 m的样点NDVI实际值偏离拟合值较大;(2)3767 m与5 051 m高程界线将月NDVI分成0.65~0.88、0.17~0.49和0.09~0.24三个值域;(3)三个高程带内植被总体可被划分为2-5月、6-9月、10月至次年1月三个生长时期;(4)高程5 051 m以上区域内NDVI总体呈增加趋势,高程3 767~5 051 m区域内NDVI于6-9月呈下降态势,其余月份均表现为增加形态,而高程3 767 m以下区域内NDVI总体为下降趋势;(5)除32%的样点NDVI主要受高程影响外,51%样点NDVI受降水影响较大(主要分布于3 003~5 843 m之间的区域,尤其是高程位于4 010 m以上的区域),二者相关系数达0.7以上;还有17%样点NDVI受其他因素控制。
关键词: NDVI高程降水雅鲁藏布江    
Abstract: Spatial discrepancy of vegetation is mainly derived from terrain abnormality and uneven distribution of precipitation. Yarlung Zangbo River basin, situated in the Tibetan autonomous region with great altitude difference, was selected as the case study. With use of moving t mutation test, tendency value computation, Pearson correlation analysis method, spatial and temporal pattern of NDVI and its relationship with elevation and precipitation in the Yarlung Zangbo River basin were investigated by combining the datasets of NDVI, precipitation and elevation within 0.25°×0.25° pixels. The results show that:(1) distribution of NDVI heavily depends on elevation and the relationship between NDVI and elevation is apparently negative with tendency value of -0.000 18 m-1. NDVI of pixels less than 3 003 m and over 5 843 m exhibited in linearly reduction with the elevation increase, while the magnitudes of NDVI in pixels with elevation between 3 003 m and 5 843 m greatly differ with the fitted NDVI using elevation; (2) According to three elevation bands divided by 3 767 m and 5 051 m, the magnitude extent of NDVI are 0.65~0.88, 0.17~0.49 and 0.09~0.24, respectively; (3) Vegetation growth within 12 months can be grossly divided into three phases including February to May, June to September and October to next January; (4) An increasing tendency was detected in NDVI over 5 051 m, and there was a decreasing tendency in NDVI from June to September at pixels located between 3 767 m and 5 051 m, however at less than 3 767 m, NDVI are generally of downward trend; (5) Variability of 32% NDVI are controlled by elevation, but that 51% NDVI are dominated by precipitation with the correlation coefficient over 0.7 mainly distributes between 3 003 m and 5 843 m (especially for the pixels with elevation over 4 010 m in them), and that the leftover 17% NDVI primarily depend on other factors. The findings are expected to provide an insight for local ecological protection and water resources management and be a reference for relevant studies in similar areas.
Key words: NDVI    elevation    precipitation    Yarlung Zangbo River
收稿日期: 2017-02-27 出版日期: 2018-04-28
ZTFLH:  P407  
基金资助: 国家自然科学基金重大计划项目(91647202);北京师范大学研究生创新创业科研基金项目(3122121F1)
作者简介: 刘晓婉(1992),女,安徽六安人,博士研究生,主要从事气候变化及其水文水资源响应.E-mail:xiaowan@mail.bnu.edu.cn
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘晓婉
彭定志
徐宗学

引用本文:

刘晓婉, 彭定志, 徐宗学. 雅鲁藏布江流域NDVI对高程与降水的相依性研究[J]. 高原气象, 2018, 37(2): 349-357.

LIU Xiaowan, PENG Dingzhi, XU Zongxue. Variability of NDVI with Elevation and Precipitation in Yarlung Zangbo River Basin. PLATEAU METEOROLOGY, 2018, 37(2): 349-357.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2017.00048        http://www.gyqx.ac.cn/CN/Y2018/V37/I2/349

Fabricante I, Oesterheld M, Paruelo J M, 2009. Annual and seasonal variation of NDVI explained by current and previous precipitation across Northern Patagonia[J]. J Arid Environ, 73(8):745-753.
Li H D, Jiang J, Chen B, et al, 2016. Pattern of NDVI-based vegetation greening along an altitudinal gradient in the eastern Himalayas and its response to global warming[J]. Environmental Monitoring & Assessment, 188(3):1-10.
Li H D, Li Y K, Shen W S, et al, 2015. Elevation-dependent vegetation greening of the Yarlung Zangbo River Basin in the southern Tibetan Plateau, 1999-2013[J]. Remote Sens, 7(12):16672-16687.
Pettorelli N, Vik J O, Mysterud A, et al, 2005. Using the satellite-derived NDVI to assess ecological responses to environmental change[J]. Trends in Ecology & Evolution, 20(9):503-510.
Prasad V K, Badarinath K V S, Eaturu A, 2008. Effects of precipitation, temperature and topographic parameters on evergreen vegetation greenery in the Western Ghats, India[J]. Int J Climatol, 28(13):1807-1819.
Propastin P A, Kappas M, 2008. Reducing uncertainty in modeling the NDVI-precipitation relationship:A comparative study using global and local regression techniques[J]. Giscience & Remote Sensing, 45(1):47-67.
Sellers P J, Tucker C J, Collatz G J, 1994. A global 1° by 1° NDVI data set for climate studies. 1994. Part 2:The generation of global fields of terrestrial biophysical parameters from the NDVI[J]. Int J Remote Sens, 15(17):3519-3545.
Tourre Y M, Jarlan L, Lacaux J P, et al, 2008. Spatio-temporal variability of NDVI-precipitation over southernmost South America:possible linkages between climate signals and epidemics[J]. Environ Res Lett, 3(4):52-55.
Wang J, Ye B S, Liu F J, et al, 2011. Variations of NDVI over elevational zones during the past two decades and climatic controls in the Qilian Mountains, Northwestern China[J]. Arctic Antarctic & Alpine Research, 43(1):127-136.
白淑英, 王莉, 史建桥, 2012. 长江流域NDVI对气候变化响应的时滞效应[J]. 中国农业气象, 33(4):579-586. Bai S Y, Wang L, Shi J Q, 2012. Time lag effect of NDVI response to climatic change in Yangtze River Basin[J]. Chinese Journal of Agrometeorology, 33(4):579-586.
陈斌, 李海东, 曹学章, 等, 2015. 雅鲁藏布江流域植被格局与NDVI分布的空间响应[J]. 中国沙漠, 35(1), 120-128. Chen B, Li H D, Cao X Z, et al, 2015. Vegetation pattern and spatial distribution of NDVI in the Yarlung Zangbo River Basin of China[J]. J Desert Res, 35(1):120-128.
付新峰, 杨胜天, 刘昌明, 2006. 雅鲁藏布江流域NDVI时空分布及与站点气候因子的关系[J]. 水土保持研究, 13(3):229-232. Fu X F, Yang S T, Liu C M, 2006. Spatial-temporal changes of NDVI and their relations with principal climatic factors in Yarlung Tsangpo River Basin's Stations[J]. Research of Soil and Water Conservation, 13(3):229-232.
韩辉邦, 马明国, 严平, 2011. 黑河流域NDVI周期性分析及其与气候因子的关系[J]. 遥感技术与应用, 26(5):554-560. Han H B, Ma M G, Yan P, 2011. Periodicity analysis of NDVI time series and its relationship with climatic factors in the Heihe River Basin in China[J]. Remote Sens Technol Appl, 26(5):554-560.
胡林涓, 彭定志, 张明月, 等, 2012. 雅鲁藏布江流域气象要素空间插值方法的比较与改进[J]. 北京师范大学学报(自然科学版), 48(5):449-452. Hu L J, Peng D Z, Zhang M Y, et al, 2012. Spatial interpolation of meteorological variables in Yarlung Zangbo River basin[J]. Journal of Beijing Normal University (Natural Science), 48(5):449-452.
贾东于, 文军, 马耀明, 等, 2017. 植被对黄河源区水热交换影响的研究[J]. 高原气象, 36(2):424-435. Jia D Y, Wen J, Ma Y M, et al, 2017. Impacts of vegetation on water and heat exchanges in the source region of Yellow River[J]. Plateau Meteor, 36(2):424-435. DOI:10.7522./j. issn. 1000-0534.2016.00044.
姜琳, 冯文兰, 郭兵, 2014. 雅鲁藏布江流域近13年植被覆盖动态监测及与降水因子的相关性分析[J]. 长江流域资源与环境, 23(11):1610-1619. Jiang L, Feng W L, Guo B, 2014. Analysis of dynamic monitoring of vegetation change and the correlation with precipitation factor in Yalu Tsangpo River basin during the past 13 years[J]. Resources and Environment in the Yangtze Basin, 23(11):1610-1619.
刘闻, 曹明明, 刘琪, 等, 2015.1951-2012年渭河流域降水频次变化特征分析[J]. 干旱区地理, 38(1), 18-24. Liu W, Cao M M, Liu Q, et al, 2015. Frequency of precipitation for the Weihe River Basin during 1951-2012[J]. Arid Land Geography, 38(1):18-24.
刘雅勤, 范广洲, 周定文, 等, 2007. 青藏高原冬、春植被归一化指数变化特征及其与高原夏季降水的联系[J]. 气象学报, 65(6):959-967. Liu Y Q, Fan G Z, Zhou D W, et al, 2007. Variability of NDVI in winter and spring on the Tibetan plateau and their relationship with summer precipitation[J]. Acta Meteor Sinica, 65(6):959-967.
吕洋, 董国涛, 杨胜天, 等, 2014. 雅鲁藏布江流域NDVI时空变化及其与降水和高程的关系[J]. 资源科学, 36(3):603-611. Lü Y, Dong G T, Yang S T, et al, 2014. Spatio-temporal variation in NDVI in the Yarlung Zangbo River Basin and its relationship with precipitation and elevation[J]. Res Science, 36(3):603-611.
吕洋, 杨胜天, 蔡明勇, 等, 2013. TRMM卫星降水数据在雅鲁藏布江流域的适用性分析[J]. 自然资源学报, (8):1414-1425. Lü Y, Yang S T, Cai M Y, et al, 2013. The applicability analysis of TRMM precipitation data in the Yarlung Zangbo River Basin[J]. J Natural Res, (8):1414-1425.
阮成卿, 2015. 基于偏相关的统计降尺度方法及其在区域降水预测中的应用[D]. 北京:中国科学院大学. Ruan C Q, 2015. Statistical downscaling on a partial correlation basis and its application in regional precipitation prediction[D]. Beijing:University of Chinese Academy of Sciences.
魏凤英, 2007. 现代气候统计诊断与预测技术(第二版)[M]. 北京:气象出版社. Wei F Y, 2007. Statistical detection and prediction technology for contemporary climate[M]. Beijing:China Meteorological Press.
徐永明, 张宇, 白琳, 2016. 基于遥感数据监测若尔盖高原植被覆盖度变化[J]. 高原气象, 35(3):643-650. Xu Y M, Zhang Y, Bai L, 2016. Study on the spatio-temporal variations of vegetation fraction in Zoige based on remote sensing data[J]. Plateau Meteor, 35(3):643-650. DOI:10.7522/j. issn. 1000-0534.2015.00040.
俞烜, 杨贵羽, 周祖昊, 等, 2008. 天津夏季降水演变规律及其城市效应[J]. 地理科学进展, 27(5):43-48. Yu X, Yang G Y, Zhou Z H, et al, 2008. Variation of summer precipitation in Tianjin region and its urbanization effect[J]. Progress in Geograp, 27(5):43-48.
张芬, 刘绍民, 徐自为, 等, 2016. 张掖绿洲-荒漠区域近地层微气象与水热交换特征[J]. 高原气象, 35(5):1233-1247. Zhang F, Liu S M, Xu Z W, et al, 2016. Characteristics of micrometeorology and energy transfer in the surface layer over the Zhangye Oasis-desert area[J]. Plateau Meteor, 35(5):1233-1247. DOI:10.7522/j. issn. 1000-0534.2015.00071.
张嘉琪, 任志远, 2015. 雅鲁藏布江流域生长季NDVI对湿季降水的响应[J]. 水土保持研究, (2):209-212. Zhang J Q, Ren Z Y, 2015. Responses of vegetation changes in growing season to precipitation in Yarlung Zangbo River Basin[J]. Research of Soil and Water Conservation, (2):209-212.
张敏强, 2010. 教育与心理统计学(第三版)[M]. 北京:人民教育出版社. Zhang M Q, 2010. Education and physiology statistics[M]. Beijing:People Education Press.
张耀宗, 2009. 近50年来祁连山地区的气候变化[D]. 兰州:西北师范大学. Zhang Y Z, 2009. Climate changes of the recent 50 years in Qilian Mountains[D]. Lanzhou:Northwest Normal University.
《中国河湖大典》编纂委员会, 2014. 中国河湖大典. 西南诸河卷[M]. 北京:中国水利水电出版社. Encyclopedia of Rivers and Lakes in China Compilation Committee, 2014. Encyclopedia of rivers and lakes in China:Section of river basins in southwest region[M]. Beijing:China Water & Power Press.
[1] 姚志刚, 杨超, 赵增亮, 王磊. 毫米波雷达反演层状云液态水路径研究[J]. 高原气象, 2018, 37(1): 223-233.
[2] 李哲, 王磊, 王林, 李谢辉, 肖国杰. 基于AMSR-E反演青藏高原夏季表层土壤湿度[J]. 高原气象, 2017, 36(1): 67-78.
[3] 陈爱军, 梁学伟, 卞林根, 刘玉洁. 青藏高原MODIS地表反照率反演结果的空间分布[J]. 高原气象, 2016, 35(6): 1409-1418.
[4] 陈爱军, 梁学伟, 卞林根, 刘玉洁. 青藏高原MODIS地表反照率反演质量分析[J]. 高原气象, 2016, 35(2): 277-284.
[5] 王丽娟, 郭铌, 杨启东, 王介民, 沙莎, 胡蝶. 基于MODIS遥感产品估算西北半干旱区的陆面蒸散量[J]. 高原气象, 2016, 35(2): 375-384.
[6] 夏志业, 刘志红, 王永前, 陈洪滨, 孙明江, 焦露. MODIS气溶胶光学厚度的PM2.5质量浓度遥感反演研究[J]. 高原气象, 2015, 34(6): 1765-1771.
[7] 潘晓, 傅云飞. 夏季青藏高原深厚及浅薄降水云气候特征分析[J]. 高原气象, 2015, 34(5): 1191-1203.
[8] 王丽娟, 郭铌, 左洪超, 胡蝶, 沙莎. 基于MODIS产品估算黄土高原半干旱区的净辐射通量[J]. 高原气象, 2015, 34(5): 1270-1278.
[9] 于敏, 张洪玲, 张桂华. Ts-NDVI特征空间结构及与气候特征的相关性研究[J]. 高原气象, 2015, 34(1): 183-189.
[10] 李子良, 黄仪方. 重力惯性波及其不稳定——急流附近飞机颠簸产生的可能机制[J]. 高原气象, 2008, 27(4): 859-865.
[11] 官莉, 李俊. 大气遥感辐射传输模式的一种有效的Jacobian算法[J]. 高原气象, 2008, 27(1): 148-152.
[12] 张文煜, 高润祥, 郭军, 王彦, 王音淇, 肖霞, 陈思宇. 利用太阳光度计反演大气柱水汽总量方法研究[J]. 高原气象, 2006, 25(6): 1107-1110.
[13] 杨兰芳, 李宗义 . 陇东地区近5年植被变化与降水的关系 [J]. 高原气象, 2005, 48(4): 629-634.
[14] 孟宪红, 吕世华, 陈世强, 张宇 . 金塔绿洲地表特征参数遥感反演研究 [J]. 高原气象, 2005, 30(4): 509-516.
[15] 丁太胜, 胡雯, 马晓群, 盛绍学, 刘惠敏, 荀尚培 . 江淮流域旱涝灾害气象卫星遥感监测和预报方法研究 [J]. 高原气象, 2003, 22(2): 147-154.