Please wait a minute...
高级检索
高原气象  2018, Vol. 37 Issue (2): 455-468    DOI: 10.7522/j.issn.1000-0534.2017.00051
论文     
气候系统模式对南亚高压气候特征的模拟比较研究
董敏1, 吴统文1, 左群杰2, 高守亭2,3
1. 国家气候中心, 北京 100081;
2. 大气物理研究所, 北京 100029;
3. 中国气象科学研究院灾害天气国家重点实验室, 北京 100081
A Simulation Comparison Study on the Climatic Characteristics of the South Asia High by the BCC Climate System Model
DONG Min1, WU Tongwen1, ZUO Qunjie2, GAO Shouting2,3
1. National climate center, 100081 Beijing, China;
2. Institute of atmospheric physics, 100029 Beijing, China;
3. National Key laboratory on disastrous weather, Chinese Academy of meteorological sciences, 100081 Beijing, China
 全文: PDF(31400 KB)  
摘要: 应用国家气候中心气候模式(BCC_CSM1.1)CMIP5和AMIP试验结果对模式模拟南亚高压的能力进行了评估。结果表明,BCC_CSM1.1模式对作为北半球高层大气环流活动中心的南亚高压有较好的模拟能力。它能够模拟出南亚高压的气候平均状态、季节变化,对南亚高压脊线的位置、高压中心的位置及其季节变化也有较好的模拟。模式存在的主要问题是高度场和南亚高压强度的模拟结果较观测明显偏弱;模拟的脊线位置在冬半年要比观测略偏南;模拟的南亚高压中心在某些月份与观测有出入,例如,5月南亚高压中心的模拟较观测偏西,夏季南亚高压的双中心的位置与实际也略有差异;模拟的南亚高压强度偏低与多种因素有关。比较耦合模式与单独大气模式模拟的南亚高压强度发现,在给定观测海温的条件下,模拟的误差减小13%~15%。因此可以认为耦合模式的误差大部分来自大气分量。海洋模拟的改进虽然对总体的模拟结果有所改进但贡献不大;比较T106和T42两种分辨率的模式对南亚高压进行模拟结果发现,分辨率的提高明显减小了南亚高压及全球100 hPa位势高度场的模拟误差。为验证地形强迫对模拟结果的影响,进行了改变青藏高原地形高度的试验,结果表明青藏高原地形高度对南亚高压的强度有明显的影响,高原高度升高将会促使南亚高压及更大范围的高层位势高度场增强。因此,正确给定高原地形这一模式的下边界条件,对模拟结果的改进有重要作用。
关键词: 南亚高压模拟评估    
Abstract: The simulation ability of BCC climate system model (BCC_CSM1.1) on climatic characteristics of the South Asia High is assessed by using the CMIP5/AMIP historical experiment output data. The results show that the BCC_CSM1.1 can pretty well simulate the mean state, ridge line position and the high pressure center of the South Asia High and their seasonal variation. The deficiencies of the model are the followings:The simulated height field is much weaker than observation, the model produced ridge line position is slightly more southward than observation in winter half year, the simulated high pressure centers have some differences in some months, for example, the simulated SAH center is more westward than observation in May, and in summer the dipole pattern of SAH center is also not well simulated. The weak simulation of SAH is related to many factors. It was found when the sea surface temperature is specified as observations, the error from AMIP run will reduce about 13%~15% compared with the results from coupled model. This means that the total error of the coupled model is mainly from atmosphere component. The improvement of ocean model would contribute only small part to total improvement. Comparing the error from T106 resolution model with that from T42 resolution model shows that the middle high resolution model has greatly reduced the simulation error of the SAH and global 100 hPa geopotential height field. To verify the effect of topography forcing on simulation results, some experiments with different topography of Qinghai-Tibetan Plateau were conducted. It is found the topography of Qinghai-Tibetan Plateau has significant influence on the strength of the SAH and global geopotential height field. The topography uprising of the Plateau could enhance the simulated SAH strength and global geopotential height field. This means that specifying the topography correctly would improve the model simulation results.
Key words: South Asia High    simulation    assessment
收稿日期: 2017-02-09 出版日期: 2018-04-28
ZTFLH:  P461  
基金资助: 国家自然科学基金委重大研究计划项目(91437215);国家重点研发计划项目(2016YFA0602100)
作者简介: 董敏(1942),男,吉林人,研究员,主要从事气候模拟和季风研究.E-mail:dongm@cma.gov.cn
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
董敏
吴统文
左群杰
高守亭

引用本文:

董敏, 吴统文, 左群杰, 高守亭. 气候系统模式对南亚高压气候特征的模拟比较研究[J]. 高原气象, 2018, 37(2): 455-468.

DONG Min, WU Tongwen, ZUO Qunjie, GAO Shouting. A Simulation Comparison Study on the Climatic Characteristics of the South Asia High by the BCC Climate System Model. PLATEAU METEOROLOGY, 2018, 37(2): 455-468.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2017.00051        http://www.gyqx.ac.cn/CN/Y2018/V37/I2/455

Boos W R, Kuang Z, 2010. Dominant control of the South Asian monsoon by orographic insulation versus plateau heating[J]. Nature, 463:218-223.
Boyle J S, 1992. Sensitivity of dynamical quantities to horizontal resolution in a climate simulation with the ECMWF atmospheric general circulation model(cycle 33)[R]. CA USA, (6). 44.
Hahn D G, Manabe S, 1975. The role of mountain in south Asian monsoon circulation[J]. J Atmos Sci, 32:1515-1541.
He B, Hu W, 2015. Assessment of the Summer South Asian High in eighteen CMIP5 models[J]. Atmos Oceanic Sci Lett, 8(1):33-38.
Kalnay E, Kanamitsu M, Kistler R, et al, 1996. The NCEP/NCAR 40 year reanalysis project[J]. Bull Amer Meteor Soc, 77(3):437-471.
Mason R B, Anderson C E, 1963. The development and decay of the 100 mb summer time anticyclone over Southern Asia[J]. Mon Wea Rev, 91:3-12.
Qian Y F, Zhang Q, Yao Y, et al, 2002. Seasonal variation and heat preference of the South Asia High[J]. Adv Atmos Sci, 19(5):821-836.
Washington W M, Daggupaty S M, 1975. Numerical simulation with the NCAR global circulation model of the mean condition during the Asian-African summer monsoon[J]. Mon Wea Rev, 103:105-114.
Willilanson D L, Kiehl J T, Hack J J, 1995. Climate sensitivity of the NCAR community climate model (CCM2) to horizontal resolution[J]. Climate Dyn, 12(3):377-397.
Wu G X, Liu Y M, Wang T W, et al, 2007. The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate[J]. J Hydrometeor. 8 (special section):770-789.
Wu T W, Li W, Ji J, et al, 2013. Global carbon budgets simulated by the Beijing climate center climate system model for the last century[J]. J Geophys Res Atmos, 118:4326-4347. DOI:10.1002/jgrd. 50320.
Wu T W, Song L, Li W, et al, 2014. An overview of BCC climate system model development and application for climate change studies[J]. J Meteor Res, 28(1):34-56.
Wu T W, Yu R, Zhang F, et al, 2010. The Beijing climate center atmospheric general circulation model:description and its performance for the present day climate[J]. Climate Dyn, 34:123-147. DOI:10.1007/s00382-008-0487-2.
方韵, 范广州, 赖欣, 等, 2016. 青藏高原季风强弱与北半球西风带位置变化的关系[J]. 高原气象, 35(6):1419-1429. Fang Y, Fan G Z, Lai X, et al, 2016. Relation between intensity of the Qinghai-Xizang Plateau monsoon and movement of the northern hemisphere westerlies[J] Plateau Meteor, 35(6):1419-1429. DOI:10.7522/j. issn. 1000-0534.2015.00106.
胡景高, 周兵, 陶丽, 2010. 南亚高压特征参数与我国夏季降水的关系分析[J]. 气象, 36(4):51-56. Hu J G, Zhou B, Tao L, 2010. Comparative analysis of the relation between characteristic parameters of South Asia High and summer precipitation of China[J]. Meteor Mon, 36(4):51-56.
黄燕燕, 钱永甫, 2004. 长江流域、华北降水特征与南亚高压的关系分析[J]. 高原气象, 23(1):68-74. Hang Y Y, QianY F, 2004. Relationship between South Asia High and characteristic of precipitation in mid-reaches of Yangtze River and North China[J]. Plateau Meteor, 23(1):68-74.
黄樱, 钱永甫, 2003. 南亚高压与华北降水的关系[J]. 高原气象, 22(6):602-607. Huang Y, QianY F, 2003. Relationships between South Asian High and summer rainfall in North China[J]. Plateau Meteor, 22(6):602-607.
罗四维, 钱正安, 王谦谦, 1982. 夏季100毫巴青藏高压与我国东部旱涝关系的天气气候研究[J]. 高原气象, 1(2):1-10. Luo S W, Qian Z A, Wang Q Q, 1982. The climatic and synoptical study about the relation between the Qinghai-Xizang high pressureon in the 100 mb surface and the flood and drought in East China in summer[J]. Plateau Meteor 1(2):1-10.
陶诗言, 朱福康, 1964. 夏季亚洲南部100毫巴流型的变化及其与西太平洋副高进退的关系[J]. 气象学报, 34(4):385-395. Tao S Y, Zhu F K, 1964. The 100 mb flow patterns in South Asia in summer and its relation to the advance and retreat of the west-pacific subtropical anticyclone over the far east[J]. Acta Meteor Sinica, 34(4):385-395.
王前, 赵勇, 陈飞, 等, 2017. 南亚高压的多模态特征及其与新疆夏季降水的联系[J]. 高原气象, 36(5):1209-1220. Wang Q, Zhao Y, Chen F, et al, 2017. Characteristics of different patterns of South Asia High and their relationships with summer precipitation in Xinjiang[J]. Plateau Meteor, 36(5):1209-1220. DOI:10.7522/j. issn. 1000-0534.2016.00123.
王在志, 吴国雄, 刘平, 等, 2005. 全球海-陆-气耦合模式大气模式分量的发展及其气候模拟性能Ⅰ-水平分辨率的影响[J]. 热带气象, 21(3):225-237. Wang Z Z, Wu G X, Liu P, et al, 2005. The development of GOALS/LASG AGCM and its global climatological features in climate simulation Ⅰ-Influence of horizontal resolution[J]. J Trop Meteor, 21(3):225-237.
张长灿, 李栋梁, 王慧, 等, 2017. 青藏高原春季地表感热特征及其对中国东部夏季雨 型的影响[J]. 高原气象, 36(1):13-3. Zhang C C, Li D L, Wang H, et al, 2017. Characteristics of the surface sensible heat on the Qinghai-Xizang Plateau in the spring and its influences on the summertime rainfall pattern over the Eastern China[J] Plateau Meteor, 36(1):13-23. DOI:10.7522/j. issn. 1000-0534.2016.00028.
张琼, 钱永甫, 张学洪, 2000. 南亚高压的年际和年代际变化[J]. 大气科学, 24(1):67-78. Zhang Q, Qian Y F, Zhang X H, 2000. Interannual and interdecadal variations of the South Asia High[J]. Sci Atmos Sini, 24(1):123-130.
张琼, 吴国雄, 2001. 长江流域大范围旱涝与南亚高压的关系[J]. 气象学报, 59(5):569-577. Zhang Q, Wu G X, 2001. The large area flood and drought over Yangtze river valley and its relation to the South Asia High[J]. Acta Meteor Sinica, 59(5):569-577.
张宇, 2012. 南亚高压变化特征及其与相关影响因子关系研究[D]. 兰州:兰州大学, 1-166. Zhang Y, 2012. Studies on the changing characteristics of South Asia High and the relation with relevant impact factors[D]. Lanzhou:Lanzhou University, 1-166.
郑庆林, 燕启民, 宋青丽, 1993. 一次南亚高压中期活动过程的数值研究[J]. 热带气象学报, 9(2):37-45. Zheng Q L, Yan Q M, Song Q L, 1993. A numerical experiment on the medium-term activities of South Asia High[J]. J Trop Meteor, 9(2):37-45.
周利敏, 陈海山, 彭丽霞, 等, 2016. 青藏高原冬春雪深年代际变化与南亚高压可能联系[J]. 高原气象, 35(1):13-23. Zhou L M, Chen H S, Peng L X, et al, 2016. Possible connection between interdecadal variation of snow depth in winter and spring over Qinghai-Xizang Plateau and South Asia High in summer[J]. Plateau Meteor, 35(1):13-23. DOI:10.7522/j. issn. 1000-0534.2014.00152.
周宁芳, 2006. IPCC 20世纪气候模拟中的南亚高压及其气候变率[D]. 南京:南京大学, 1-133. Zhou N F, 2006. The South Asian High and its variability in the climate of the twentieth century experiment for IPCC[D]. Nanjing:Nanjing University, 1-133.
朱福康, 陆龙骅, 陈咸吉, 等, 1980. 南亚高压[M]. 北京:科学出版社. Zhu F K, Lu L H, Chen X J, et al, 1980. South Asia High[M]. Beijing:Science Press.
[1] 李燕, 闫加海, 张冬峰. 青藏高原冬春积雪异常和中国东部夏季降水关系的诊断与模拟[J]. 高原气象, 2018, 37(2): 317-324.
[2] 贲海荣, 周顺武, 乔钰, 单幸, 李强. 一个新的青藏高原热力指数的构建及其应用[J]. 高原气象, 2017, 36(6): 1487-1498.
[3] 刘维成, 张强, 傅朝. 近55年来中国西北地区降水变化特征及影响因素分析[J]. 高原气象, 2017, 36(6): 1533-1545.
[4] 王前, 赵勇, 陈飞, 杨青, 黄安宁. 南亚高压的多模态特征及其与新疆夏季降水的联系[J]. 高原气象, 2017, 36(5): 1209-1220.
[5] 赵玉衡, 封国林, 郑志海. 基于统计方法的典型冬季海温变率分类研究[J]. 高原气象, 2017, 36(5): 1357-1367.
[6] 焦铂洋, 苏昱丞, 郭胜利, 郭栋, 施春华, 李婧媛, 苍中亚, 傅帅. 青藏高原臭氧谷的分布及其与太阳辐射的关系[J]. 高原气象, 2017, 36(5): 1201-1208.
[7] 庞轶舒, 马振峰, 杨淑群, 杨小波. 盛夏高原季风指数的探讨及其对四川盆地降水的影响[J]. 高原气象, 2017, 36(4): 886-899.
[8] 庞雪琪, 李栋梁, 姚慧茹. 欧亚中高纬冬季地表感热异常与中国西北东部夏季降水的可能联系[J]. 高原气象, 2017, 36(3): 675-684.
[9] 卓嘎, 德吉卓玛, 尼玛吉. 青藏高原土壤湿度分布特征及其对长江中下游6、7月降水的影响[J]. 高原气象, 2017, 36(3): 657-666.
[10] 方楠, 阳坤, 拉珠, 陈莹莹, 王君波, 朱立平. WRF湖泊模型对青藏高原纳木错湖的适用性研究[J]. 高原气象, 2017, 36(3): 610-618.
[11] 黄鑫, 布和朝鲁, 林大伟, 吕冠儒. 春季蒙古气旋活动与冬季北大西洋海温异常和欧亚大陆积雪异常的联系[J]. 高原气象, 2017, 36(3): 750-762.
[12] 李春晖, 潘蔚娟, 李霞, 刘燕. 华南春季降水及其季节内振荡强度的年代际变化特征[J]. 高原气象, 2017, 36(2): 491-500.
[13] 杨建玲, 胡海波, 穆建华, 王敏, 胡文东. 印度洋海盆模影响西北东部5月降水的数值模拟研究[J]. 高原气象, 2017, 36(2): 510-516.
[14] 周亚, 高晓清, 李振朝, 惠小英, 杨丽薇. 青藏高原深层土壤热通量的变化特征分析[J]. 高原气象, 2017, 36(2): 307-316.
[15] 周娟, 文军, 王欣, 贾东于, 陈金雷. 青藏高原季风演变及其与土壤湿度的相关分析[J]. 高原气象, 2017, 36(1): 45-56.