Please wait a minute...
高级检索
高原气象  2018, Vol. 37 Issue (3): 702-720    DOI: 10.7522/j.issn.1000-0534.2017.00054
论文     
高原低涡东移加深过程的结构分析
杨颖璨1,2, 李跃清2, 陈永仁3
1. 中国气象科学研究院, 北京 100081;
2. 中国气象局成都高原气象研究所, 四川 成都 610072;
3. 四川省气象台, 四川 成都 610072
The Characteristic Analysis of an Eastwards Plateau Vortex by Its Strengthening Process
YANG Yingcan1,2, LI Yueqing2, CHEN Yongren3
1. Chinese Academy of Meteorological Sciences, Beijing 100081, China;
2. Institute of Plateau Meteorology, China Meterological Administration Chengdu 610072, Sichuan, China;
3. Sichuan Meteorological Observatory, Chengdu 610072, Sichuan, China
 全文: PDF 
摘要: 利用NCEP再分析资料、常规观测资料和FY-2E黑体亮温(TBB)资料对2010年7月21-26日一次成熟阶段垂直厚度大于500 hPa的深厚高原涡的结构和演变特征进行了综合分析,探讨了此次深厚型低涡的发生发展与高层环流的关系。结果表明:(1)深厚型高原涡生成阶段,低涡内辐合弱,下沉运动强,动力辐合作用不是该低涡发展至对流层高层的原因。南亚高压北侧、东侧高空急流的下沉支流将高层高位涡、高动量的空气向下输送,促使该低涡生成、发展。深厚型高原涡的演变与南亚高压联系密切,南亚高压东部脊线北抬,形成“东北西南”向,其东南侧的东北气流引导深厚型低涡向西移动。(2)浅薄型高原涡500 hPa上暖心明显,其上为冷性结构。深厚型高原涡在热力结构上分层明显,时空演变较为复杂,低涡在250 hPa上与南压高压具有相同的暖性结构,250 hPa以下为冷性结构,冷性结构的转变过程在不同高度上存在差异。(3)对比不同阶段深厚型高原涡与浅薄型高原涡的动力差异发现,低涡形成前期,深厚型高原涡有强辐合和上升运动,而浅薄型高原涡辐合较弱,以下沉运动为主;在消散期,深厚型高原涡主要减弱因子是水平涡度平流,而垂直涡度转换成水平涡度是造成浅薄型高原涡垂直涡度下降的主要原因。
关键词: 垂直厚度高原涡高层环流    
Abstract: A present understanding of Plateau Vortex (PV) is regarded as a shallow vortex. However, some studies have pointed out that PV is not always a shallow system. A case of PV with a vertical thickness greater than 500 hPa were analyzed using the NCAR/NCEP reanalysis data, the conventional observations as well as the TBB data from FY-2E, and we discussed the relationship between the deep plateau vortex and the upper circulation. The results show:(1) In the developing stage, the convergence of vortex is weak while the downdrafts are strong, convergence is not the reason for the development of the deep plateau vortex which extended to the upper troposphere. The downdrafts of the high potential vorticity and high momentum form the upper air transported by the upper-level jet stream which in the north and east of the South Asian High(SAH) led to the generation and development of vortex. The evolution of the deep plateau vortex is related to SAH. Therefore, the eastern ridge of the SAH moved to the north and a "northeast-southwest" pattern was formed, the northeast flow of southeast SAH led the deep plateau vortex to the west. (2) The shallow PV has a warm character in thermal structure with a warm core at 500 hPa. The deep vortex has stratification in thermal structure and complex variety in time and space, Besides, it has a warmer structure as same as the SAH at 250 hPa and a colder structure below 250 hPa, the changes of the cold part of the vortex vary from height in different stages. (3) Comparing the dynamic characters between deep and shallow vortices in various stages, we found the deep PV has a stronger convergence and ascending motion in the early than the shallow PV which dominated by the subsidence movement. During the dissipation stage, horizontal vorticity advection is the main factor which causes the deep PV become weaker. On the other hand, the vertical vorticity conversion to the horizontal is the main reason for the decrease of the shallow PV.
Key words: Vertical thickness    Plateau Vortex    upper circulation
收稿日期: 2017-02-08 出版日期: 2018-06-24
ZTFLH:  P458.2  
基金资助: 国家自然科学基金重点项目(91337215);国家自然科学基金面上项目(41275051);四川省应用基础研究计划重点项目(2016JY0046)
通讯作者: 李跃清(1960),男,四川人,研究员,主要从事高原气象的研究.E-mail:yueqingli@163.com     E-mail: yueqingli@163.com
作者简介: 杨颖璨(1992),女,湖南衡阳人,硕士研究生,主要从事高原天气研究.E-mail:576021368@qq.com
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杨颖璨
李跃清
陈永仁

引用本文:

杨颖璨, 李跃清, 陈永仁. 高原低涡东移加深过程的结构分析[J]. 高原气象, 2018, 37(3): 702-720.

YANG Yingcan, LI Yueqing, CHEN Yongren. The Characteristic Analysis of an Eastwards Plateau Vortex by Its Strengthening Process. Plateau Meteorology, 2018, 37(3): 702-720.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2017.00054        http://www.gyqx.ac.cn/CN/Y2018/V37/I3/702

Cheng X L, Li Y Q, Xu L, 2016.An analysis of an extreme rainstorm caused by the interaction of the Tibetan Plateau vortex and the Southwest China vortex from an intensive observation[J].Meteor Atmos Phys, 128(3):373-399.
Fu S M, Li W L, Sun J H, et al, 2015.Universal evolution mechanisms and energy conversion characteristics of long-lived mesoscale vortices over the Sichuan Basin[J].Atmos Sci Lett, 16(2):127-134.
Fu S M, Yu F, Wang D H, et al, 2013.A comparison of two kinds of eastward-moving mesoscale vortices during the mei-yu period of 2012[J].Science China Earth Sciences, 56(2):282-300.
Kirk J R, 2007.A phase-plot method for diagnosing vorticity concentration mechanisms in mesoscale convective vortices[J].Mon Wea Rev, 135:801-820.
Xiang S Y, Li Y Q, Li D, et al, 2013.An analysis of heavy precipitation caused by a retracing plateau vortex based on TRMM data[J].Meteor Atmos Phys, 122:3-45.
陈伯民, 钱正安, 张立盛, 1996.夏季青藏高原低涡形成和发展的数值模拟[J].大气科学, 20(4):491-502.Chen B M, Qian Z A, Zhang L S, 1996.Numerical simulation of the formation and development of vortices over the Qinghai-Xizang Plateau in summer[J].Chinese J Atmos Sci, 20(4):491-502.
董元昌, 李国平, 2014.凝结潜热在高原涡东移发展不同阶段作用的初步研究[J].成都信息工程学院学报, 29(4):400-407.Dong Y C, Li G P, 2014.A preliminary study on the role played by latent heating during the different periods of the Tibetan Plateau Vortex's eastward movement and developmet[J].Journal of Chengdu University of Information Technology, 29(4):400-407.
傅昺珊, 岳艳霞, 李国翠, 2006.TBB资料的处理及应用[J].气象, 32(2):40-45.Fu B S, Yue Y X, Li G C, 2006.TBB data processing and application[J].Meteor Mon, 32(2):40-45.
何光碧, 高文良, 屠妮妮, 2009.两次高原低涡东移特征及发展机制动力诊断[J].气象学报, 67(4):599-612.He G B, Gao W L, Tu N N, 2009.The dynamic diagnosis on easterwards moving characteristics and developing mechanism of two Tibetan Plateau vortex processes[J].Acta Meteor Sinica, 67(4):599-612.
李国平, 蒋静, 2000, 一类奇异孤波解及其在高原低涡结构分析中的应用[J].气象学报, 58(4):447-456.Li G P, Jiang J, 2000.A type of singular solitary wave and its application of structure analysis of the Tibetan Plateau vortex[J].Acta Meteor Sinica, 58(4):447-456.
李国平, 卢会国, 黄楚惠, 等, 2016.青藏高原夏季地面热源的气候特征及其对高原低涡生成的影响[J].大气科学, 40(1):131-141.Li G P, Lu H G, Huang C H, et al, 2016.A climatology of the surface heat source on the Tibetan Plateau in summer and its impacts on the formation of the Tibetan Plateau Vortex[J].Chinese J Atmos Sci, 40(1):131-141.
李国平, 徐琪, 2005.边界层动力"抽吸汞"对青藏高原低涡作用的初步研究[J].大气科学, 29(6):965-972.Li G P, Xu Q, 2005.Effect of dynamic pumping in the boundary layer on the Tibetan Plateau Vortices[J].Chinese J Atmos Sci, 29(6):965-972.
李国平, 赵邦杰, 杨锦青, 2002.地面感热对青藏高原低涡流场结构及发展的作用[J].大气科学, 26(4):519-525.Li G P, Zhao B J, Yang J Q, 2002.A dynamical study of the role of surface sensible heating in the structure and intensification of the Tibetan Plateau Vortices[J].Chinese J Atmos Sci, 26(4):519-525.
李国平, 2013.高原涡、西南涡研究的新进展及有关科学问题[J].沙漠与绿洲气象, 7(3):1-6.Li G P, 2013.Advance in Tibetan Plateau Vortex and Southwest Vortex research and related scientific problems[J].Desert Oasis Meteor, 7(3):1-6.
李跃清, 郁淑华, 彭骏, 等, 2012.青藏高原低涡切变线年鉴[M].北京:科学出版社, 113.Li Y Q, Yu S H, Peng J, et al, 2012.Yearbook of Tibet Plateau vortex and shear line in Qinghai-Xizang Plateau[M].Beijing:Science Press, 113.
林志强, 2015.19792013年ERA-Interim资料的青藏高原低涡活动特征分析[J].气象学报, 73(5):925-939.Lin Z Q, 2015.An objective analysis of the Tibetan Plateau vortexes base on the ERA-interim reanalysis data:19792013[J].Acta Meteor Sinica, 73(5):925-939.
刘福明, 伏梅娟, 1886.东移的青藏高原低涡的研究[J].高原气象, 5(2):125-134.Liu F M, Fu M J, 1986.A study on the moving eastward lows over Qinghai-Xizang Plateau[J].Plateau Meteor, 5 (2):125-134.
刘英, 王东海, 张中锋, 等, 2012.东北冷涡的结构及其演变特征的个例综合分析[J].气象学报.70(03):354-370.Liu Y, Wang D H, Zhang Z F, et al, 2012.A comprehensive analysis of the structure of a Northeast China-cold-vortex and its characteristics of evolution[J].Acta Meteor Sinica, 70(3):354-370.
柳草, 李跃清, 李德俊, 2010.高原低涡移出高原的动力结构特征分析[J].高原山地气象研究, 29(3):8-11.Liu C, Li Y Q, Li D J, 2010.Analysis on the dynamic structure of vortex moving out of the Tibetan Plateau[J].Plateau Mountain Meteor Res, 29(3):8-11.
罗四维, 1992.青藏高原及其邻近地区几类天气系统的研究[M].北京:气象出版社, 7-53.Luo S W, 1992.The research of several synoptic systems over the Tibetan Plateau and nearby areas[M].Beijing:China Meteorological Press, 7-53.
罗四维, 杨洋, 1992.一次青藏高原夏季低涡的数值模拟研究[J].高原气象, V11(1):39-48.Luo S W, Yang Y, 1992.A case study on numerical simulation of summer vortex over Qinghai-Xizang Plateau[J].Plateau Meteor, V11(1):39-48.
吕君宁, 钱正安, 单扶民, 等, 1984.夏季青藏高原低涡的综合结构, 青藏高原气象科学试验文集(二)[M], 北京:科学出版社.Lü J N, Qian Z N, Shan F M, et al, 1984.The discuss on climate factors and statistic analysis of the Tibetan Plateau vortex in 1979 summer.In:The Tibetan Plateau Meteorological Experiment Corpus Ⅱ[M].Beijing:Science Press.
乔全明, 张雅高, 1994.青藏高原天气学[M].北京:气象出版社, 147-155.Qiao Q M, Zhang Y G, 1994.Synoptic meteorology of the Tibetan Plateau[M].Beijing:China Meteorological Press, 147-155.
青藏高原气象科研拉萨会战组, 1981.夏半年青藏高原500毫巴低涡切变线研究[M].北京:科学出版社.Lhasa group for Tibetan Plateau meteorology research, 1981.Research of 500 hPa shear lines over the Tibetan Plateau in summer[M].Beijing:Science Press.
寿绍文, 2010.位涡理论及其应用[J].气象, 36(3):9-18.Shou S W, 2010.Theory and application of potential vorticity[J].Meteor Mon, 36(3):9-18.
宋雯雯, 李国平, 2010.高原低涡结构特征模拟与诊断的初步研究[J].成都信息工程学院学报, 25(3):281-285.Song W W, Li G P, 2010.Study of character simulation and diagnoses of Plateau Vortex[J].Journal of Chengdu University of Information Technology, 25(3):281-285.
王鑫, 李跃清, 郁淑华, 等, 2009.青藏高原低涡活动的统计研究[J].高原气象, (01):64-71.Wang X, Li Y Q, Yu S H, et al, 2009.Statistical study on the plateau low vortex activities[J].Plateau Meteor, 28(1):64-71.
吴国雄, 郑永骏, 刘屹岷, 2013.涡旋发展和移动的动力和热力问题Ⅱ:广义倾斜涡度发展[J].气象学报, 71(2):198-208.Wu G X, Zheng Y J, Liu Y M, 2013.Dynamical and thermal problems in vortex development and movement.Part Ⅱ:Generalized slantwise vorticity development[J].Acta Meteor Sinica, 71(2):198-208.
杨克明, 林建, 康志明, 等, 2006.2004年7月黄淮特大暴雨的天气动力学分析[J].高原气象, 25(5):781-791.Yang K M, Lin J, Kang Z M, et al, 2006.Synoptica diagnostic analysis on a heavy rainstorm between Yellow River and Huaihe River in summer of 2004[J].Plateau Meteor, 25(5):781-791.
叶笃正, 高由禧, 1979.青藏高原气象学[M].北京:科学出版社.Ye D Z, Gao Y X, 1979.The Tibetan Plateau meteorology[M].Beijing:Science Press.
郁淑华, 2002.高原低涡东移过程的水汽图像[J].高原气象, 21(2):199-204.Yu S H, 2002.Water vapor imagery of vortex moving process over Qinghai-Xizang Plateau[J].Plateau Meteor, 21(2):199-204.
郁淑华, 高文良, 肖玉华, 2008.冷空气对两例高原低涡移出高原影响的分析[J].高原气象, 27(1):96-103.Yu S H, Gao W L, Xiao Y H, 2008.Analysis for the influence of old air mass on two cases of plateau vortex moving out of the Tibetan Plateau[J].Plateau Meteor, 27(1):96-103.
郁淑华, 高文良, 2006.高原低涡移出高原的观测事实分析[J].气象学报, 64(3):392-399.Yu S H, Gao W L, 2006.Observational analysis on the movement of vortices before/after moving out the Tibetan Plateau[J].Acta Meteor Sinica, 64(3):392-399.
郁淑华, 高文良, 2010.1998年夏季两例青藏高原低涡结构特征的比较[J].高原气象, 29(6):1357-1368.Yu S H, Gao W L, 2010.Comparison on structure characteristics of two Tibetan Plateau vortexes in summer, 1998[J].Plateau Meteor, 29(6):1357-1368.
郁淑华, 高文良, 2016.高原涡移出高原后持续的对流层高层环流特征[J].高原气象, 35(6):1441-1455.Yu S H, Gao W L, 2016.Circulation features of sustained departure Qinghai-Xizang Plateau vortex at upper tropospheric level[J].Plateau Meteor, 35(6):1441-1455.DOI:10.7522/j.issn.1000-0534.2016.00026.
[1] 翟丽萍, 农孟松, 赖珍权, 祁丽燕, 刘日胜. 广西“4·20”暖区飑线的形成及结构[J]. 高原气象, 2018, 37(2): 568-576.
[2] 王莹, 苗峻峰, 苏涛. 海南岛地形对局地海风降水强度和分布影响的数值模拟[J]. 高原气象, 2018, 37(1): 207-222.
[3] 赵庆云, 傅朝, 刘新伟, 陈晓燕, 周晓军. 西北东部暖区大暴雨中尺度系统演变特征[J]. 高原气象, 2017, 36(3): 697-704.
[4] 武麦凤, 吉庆, 武维刚. 一次槽前“干”对流背景下阵风锋天气过程分析[J]. 高原气象, 2017, 36(3): 845-851.
[5] 常煜, 李秀娟, 陈超, 马素艳, 仲夏, 赵斐, 马学峰. 内蒙古一次暴雨过程中尺度特征及成因分析[J]. 高原气象, 2016, 35(2): 432-443.
[6] 万明波, 孟宪贵, 刁秀广. 山东极端强降雨风暴传播类型及流场结构特征[J]. 高原气象, 2015, 34(6): 1741-1750.
[7] 王天义, 朱克云, 张杰, 周筠珺. 拉萨一次热力雷暴的结构特征及数值模拟[J]. 高原气象, 2015, 34(5): 1237-1248.
[8] 刁秀广, 孟宪贵, 万明波, 张骞, 李静. 源于飑线前期和强降雨带后期的弓形回波雷达产品特征及预警[J]. 高原气象, 2015, 34(5): 1486-1494.
[9] 黄勇, 吴林林, 冯妍, 翟菁, 刘慧娟, 袁野. 两次对流云合并过程的双偏振雷达观测研究[J]. 高原气象, 2015, 34(5): 1474-1485.
[10] 潘留杰, 张宏芳, 侯建忠, 袁小林. 弱天气系统强迫下黄土高原强对流云的初生及演变[J]. 高原气象, 2015, 34(4): 982-990.
[11] 孙燕, 韩桂荣, 李超. 夏季东北冷涡异常对淮河流域降水影响机制的数值模拟[J]. 高原气象, 2015, 34(4): 1149-1157.
[12] 徐芬, 杨吉, 夏文梅, 周红根. 雷达强度数据中的阵风锋特征统计和自动识别[J]. , 2015, 34(2): 586-595.
[13] 杜正静, 何玉龙, 熊方, 邓晓红, 石开银, 彭倩. 滇黔准静止锋诱发贵州春季暴雨的锋生机制分析[J]. , 2015, 34(2): 357-367.
[14] 王晓峰, 许晓林, 张蕾, 王平, 徐同. 上海"0731"局地强对流观测分析[J]. 高原气象, 2014, 33(6): 1627-1639.
[15] 张一平, 俞小鼎, 孙景兰, 梁俊平, 李周. 一次槽后型大暴雨伴冰雹的形成机制和雷达观测分析[J]. , 2014, 33(4): 1093-1104.