Please wait a minute...
高级检索
高原气象  2018, Vol. 37 Issue (2): 524-534    DOI: 10.7522/j.issn.1000-0534.2017.00056
论文     
两种类型短时强降水形成机理对比分析——以甘肃两次短时强降水过程为例
许东蓓1, 苟尚2, 肖玮2, 孟丽霞3, 沙宏娥2, 狄潇泓2, 石延召2
1. 成都信息工程大学大气科学学院/高原大气与环境四川省重点实验室, 四川 成都 610225;
2. 兰州中心气象台, 甘肃 兰州 730020;
3. 甘肃省气象服务中心, 甘肃 兰州 730020
Case Study on the Formation Mechanism of Two Types of Short-term Strong Rainfall Occurred in Gansu Province on 18 June 2013 and 19 June 2014
XU Dongbei1, GOU Shang2, XIAO Wei2, MENG Lixia3, SHA Honge2, DI Xiaohong2, SHI Yanzhao2
1. College of Atmospheric Sciences, Chengdu University of Information Technology, Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, Chengdu 610225, Sichuan, China;
2. Lanzhou Centre Meteorological Observation, Lanzhou 730020, Gansu, China;
3. Gansu Meteorological Service Center, Lanzhou 730020, Gansu, China
 全文: PDF(30873 KB)  
摘要: 利用"2014·06·18"和"2013·06·19"两次短时强降水过程的实况资料及NCEP 1°×1°再分析资料,对比分析了发生在甘肃省中南部地区相同季节、相似气候背景下的不同类型短时强降水过程实况特征、天气形势配置、动力热力特征、云图及雷达特征。结果表明:两次过程雨强均较大,但"2014·06·18"降水过程分散性强、持续时间短,且伴随冰雹、雷暴大风等多种强对流天气,而"2013·06·19"降水过程区域性强、持续时间长。前者是发生在中低层冷暖空气强烈交汇,并伴有明显温度锋区和锋生,地面有冷锋活动形势下,是斜压锋生类短时强降水。后者是发生在低层强烈发展的暖湿平流中,暖湿平流对建立热力不稳定起了主导作用,是暖平流强迫类短时强降水。不稳定指数显示前者不稳定能量大于后者,且存在一定的对流抑制能量,有利于强对流的发展。暖平流强迫类短时强降水湿层厚度高于斜压锋生类,而斜压锋生类短时强降水高层垂直风切变表现得更强。"2013·06·19"暖平流强迫类短时强降水云图特征为沿暖湿气流迅速发展北上的带状云系。"2014·06·18"斜压锋生类短时强降水则表现为与低空"人"字形切变相对应的逗点云系,云系的发展变化与形势场变化密切相关,是降水落区及其发展变化的重要原因。雷达反射率因子显示"2013·06·19"是积状云为主的混合性降水回波,回波梯度小,质心低。"2014·06·18"是层积云中分散着块状对流单体回波,回波梯度大,回波质心发展较高,回波强度可发展到很强。当50 dBz强反射率因子核心区接近8 km高度,达到-20℃层高度,回波顶高也达到12 km时,有冰雹产生。
关键词: 两种类型短时强降水形成机理对比分析    
Abstract: By using "2014·06·18" and "2013·06·19" short-term strong precipitation observation and NCEP 1°×1°reanalysis data, the characteristics of the situation, the configuration of the weather situation, the dynamic thermal characteristics, cloud and radar features for different kinds of strong short-term rainfall were compared and analyzed, which happened in same season and similar climate background at the middle and south parts of Gansu Province. The results show that the formation mechanism have both similarities and significant differences. The rain intensity of the two processes is large, and the former occurred in the case of intense convergence of cold and warm air in the middle and lower level, which accompanied with obvious temperature frontal zone, frontogenesis and the ground cold front activity. It is a kind of short-term strong precipitation of baroclinic frontogenesis. The latter occurred in the strongly developed warm and moist advection in the lower level, the warm and wet advection played a leading role in establishing thermodynamic instability, it is a kind of short time strong precipitation of the warm advection force. The instability index showed that the unstable energy of the former was much larger than that of the latter, and there was convective inhibition, which was conducive to the development of strong convection. The thickness of the wet layer of warm advection forced short-term heavy rainfall was higher than that of oblique pressure front short-term heavy rainfall, and high-level vertical wind shear performance of the latter short-term heavy rainfall was much stronger. The image features of warm advection force was a banded cloud which was quickly move northward along with warm air on 19 June 2013. The image features of oblique pressure front was a comma cloud system which corresponding to the low-level herringbone shaped shear on 18 June 2014. The change and development of cloud system is closely related to the changes of situation field, which is an important reason for the development and changes of precipitation area. Radar reflectivity factor on 19 June 2013 showed that it was a mixed cloud-based mixed precipitation echo, and the echo gradient was small with low center of mass. Radar reflectivity factor on 18 June 2014 was a stratified cloud scattered block convection single echo, and the echo gradient was large with high center of mass, besides, the echo intensity can be developed to very strong. When the core area of the strong reflectivity of 50 dBz is close to 8 km, reached the height of -20℃ layer, and the echo top height reached 12 km at same time, there would be hail there.
Key words: Two types    short-term strong rainfall    formation mechanism    comparative analysis
收稿日期: 2017-02-08 出版日期: 2018-04-28
ZTFLH:  P426  
基金资助: 公益性行业科研专项(GYHY201506006);中国气象局预报员专项(CMAYBY2015-078)
作者简介: 许东蓓(1968),女,浙江东阳人,正高级工程师,主要从事天气预报及灾害性天气研究.E-mail:xdb@cuit.edu.cn
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
许东蓓
苟尚
肖玮
孟丽霞
沙宏娥
狄潇泓
石延召

引用本文:

许东蓓, 苟尚, 肖玮, 孟丽霞, 沙宏娥, 狄潇泓, 石延召. 两种类型短时强降水形成机理对比分析——以甘肃两次短时强降水过程为例[J]. 高原气象, 2018, 37(2): 524-534.

XU Dongbei, GOU Shang, XIAO Wei, MENG Lixia, SHA Honge, DI Xiaohong, SHI Yanzhao. Case Study on the Formation Mechanism of Two Types of Short-term Strong Rainfall Occurred in Gansu Province on 18 June 2013 and 19 June 2014. PLATEAU METEOROLOGY, 2018, 37(2): 524-534.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2017.00056        http://www.gyqx.ac.cn/CN/Y2018/V37/I2/524

白乐生, 1988. 准地转Q矢量分析及其在短期天气预报中的应用[J]. 气象, 14(8):25-30. Bai L S, 1988. Quasi-geostrophic Q-vector analysis and its application in short-range forecasting[J]. Meteor Mon, 14(8):25-30.
陈渭民, 2003. 卫星气象学[M]. 北京:气象出版社, 238-252. Chen W M, 2003. Satellite meteorology[M]. Beijing:China Meteorological Press, 238-252.
陈英英, 唐仁茂, 李德俊, 等, 2013. 利用雷达和卫星资料对一次强对流天气过程的云结构特征分析[J]. 高原气象, 32(4):1148-1156. Chen Y Y, Tang R M, Li D J, et al, 2013. Analysis on cloud structure of a severe convective storm using radar and satellite data[J]. Plateau Meteor, 32(4):1148-1156. DOI:10.7522/j. issn. 1000-0534.2012.00108.
傅朝, 杨晓军, 周晓军, 等, 2015.2013年6月19-20日甘肃陇东南暖区暴雨多普勒雷达特征分析[J]. 气象, 41(9):1095-1103. Fu Z, Yang X J, Zhou X J, et al, 2015. Analysis on Doppler radar characteristics of warm area rainstorm in Southeastern Gansu during 19-20 June 2013[J]. Meteor Mon, 4(19):1095-1103.
韩文宇, 杨丽丽, 杨毅, 2016. C波段雷达资料在强降水过程中的应用[J]. 干旱气象, 34(1):154-162. Han W Y, Yang L L, Yang Y, 2016. Application of C-band radar data in heavy precipitation process[J]. J Arid Meteor, 34(1):154-162.
井喜, 李社宏, 屠妮妮, 等, 2011. 黄河中下游一次MCC和中-β尺度强对流云团相互作用暴雨过程综合分析[J]. 高原气象, 30(4):913-928. J X, Li S H, Tu N N, et al, 2011. Synthetic diagnostic analysis on a rainstorm process caused interaction of MCC and Meso-β scale severe convective cell in mid-and lower-reaches of yellow river[J]. Plateau Meteor, 30(4):913-928.
雷蕾, 孙继松, 魏东, 2011. 利用探空资料判别北京地区夏季强对流的天气类别[J]. 气象, 37(2):136-141. Lei L, Sun J S, Wei D, 2011. Distinguishing the category of the summer convective weather by sounding data in Beijing[J]. Meteor Mon, 37(2):136-141.
雷蕾, 孙继松, 王国荣, 等, 2012. 基于中尺度数值模式快速循环系统的强对流天气分类概率预报试验[J]. 气象学报, 70(4):752-765. Lei L, Sun J S, Wang G R, et al, 2012. An experiment study of the summer convective weather categorical probability forecast based on the rapid updated cycle system for the Beijing area (BJ-RUC)[J]. Acta Meteor Sinica, 70(4):752-765.
刘建文, 郭虎, 李耀东, 等, 2005. 天气分析预报物理量计算基础[M]. 北京:气象出版社, 70-71. Liu J W, Guo H, Li Y D, et al, 2005. The fundamental physicscal caculation of weather analysis forecast[M]. Beijing:China Meteorological Press, 70-71.
潘留杰, 张宏芳, 王楠, 等, 2013. 陕西一次强对流天气过程的中尺度及雷达观测分析[J]. 高原气象, 32(1):278-289. Pan L J, Zhang H F, Wang N, et al, 2013. Mesoscale and Doppler radar observation analyses on a severe convective weather process in middle Shaanxi province in September 2010[J]. Plateau Metero, 32(1):278-289. DOI:10.7522/j. issn. 1000-0534.2012.00027.
孙继松, 陶祖钰, 2012. 强对流天气分析与预报中的若干基本问题[J]. 气象, 38(2):164-173. Sun J S, Tao Z Y, 2012. Some essential issues connected with severe convective weather analysis and forecast[J]. Meteor Mon, 38(2):164-173.
苏永玲, 何立富, 巩远发, 等, 2011. 京津冀地区强对流时空分布与天气学特征分析[J]. 气象, 37(2):177-184. Su Y L, He L F, Gong Y F, et al, 2011. A study of temporal-spatial distribution and synoptic characteristics of severe convective weather in Beijing, Tianjin and Hebei[J]. Meteor Mon, 37(2):177-184.
王坚红, 张楠, 苗春生, 等, 2011. 天津地区080625强对流天气过程的分析[J]. 大气科学学报, 35(6):688-696. Wang J H, Zhang N, Miao C S, et al, 2011. The analysis of a strong convective precipitation process in Tianjin on 25 June 2008[J]. Trans Atmos Sci, 35(6):688-696.
吴涛, 万玉发, 王珊珊, 2012. 多雷达反演参量联合的短时强降水识别方法研究[J]. 高原气象, 31(5):1393-1406. Wu T, Wan Y F, Wang S S, 2012. Research of very short-term heavy precipitation identification method combinated multi-radar retired parameters[J]. Plateau Meteor, 31(5):1393-1406.
许新田, 刘瑞芳, 郭大梅, 等, 2012. 陕西一次持续性强对流天气过程的成因分析[J]. 气象, 38(5):533-543. Xu X T, Liu R F, Guo D M, et al, 2012. Cause analysis of a continuous severe convective weather in Shananxi[J]. Meteor Mon, 38(5):533-543.
许爱华, 孙继松, 许东蓓, 等, 2014. 中国中东部强对流天气的天气形势分类和基本要素配置特征[J]. 气象, 40(4):400-412. Xu A H, Sun J S, Xu D B, et al, 2014. Basic synoptic situation classification and element character of severe convection in China[J]. Meteor Mon, 40(4):400-412.
许东蓓, 许爱华, 肖玮, 等, 2015. 中国西北四省区强对流天气形势配置及特殊性综合分析[J]. 高原气象, 34(4):973-981. Xu D B, Xu A H, Xiao W, et al, 2015. Comprehensive analysis on the severe convective weather situation configuration and its particularity in Northwest China[J]. Plateau Meteor, 34(4):973-981. DOI:10.7522/j. issn. 1000-0534.2014.00102.
尹东屏, 吴海英, 张备, 等, 2010. 一次海风锋触发的强对流天气分析[J]. 高原气象, 29(5):1261-1269. Yin D P, Wu H Y, Zhang B, et al, 2010. Analysis on a severe convective weather triggered sea breeze front[J]. Plateau Metero, 29(5):1261-1269.
郑媛媛, 姚晨, 郝莹, 等, 2011. 不同类型大尺度环流背景下强对流天气的短时临近预报预警研究[J]. 气象, 37(7):795-801. Zheng Y Y, Yao C, Hao Y, et al, 2011. The short-time forecasting and early-warning research on severe convective weather under different types of large-scale circulation background[J]. Meteor Mon, 37(7):795-801.
张涛, 方翀, 朱文剑, 等, 2012.2011年4月17日广东强对流天气过程分析[J]. 气象, 38(7):814-818. Zhang T, Fang C, Zhu W J, et al, 2012. Analysis of the 17 April 2011 severe convective weather in Guangdong[J]. Meteor Mon, 38(7):814-818.
张之贤, 张强, 赵庆云, 等, 2014. 陇东南地区短时强降水的雷达回波特征及其降水反演[J]. 高原气象, 33(2):530-538. Zhang Z X, Zhang Q, Zhao Q Y, et al, 2014. Analysis on radar echo and precipitation retrieve of short-duration heavy precipitation in southeast Gansu[J]. Plateau Metero, 33(2):530-538. DOI:10.7522/j. issn. 1000-0534.2013.00001.
[1] 除多, 边巴次仁, 扎珠, 德吉央宗. SR-50A超声雪深仪在西藏高原的适用性研究[J]. 高原气象, 2018, 37(2): 382-393.
[2] 薛小宁, 邓小波, 刘贵华. 基于卫星资料的青藏高原卷云特性研究[J]. 高原气象, 2018, 37(2): 505-513.
[3] 李培都, 司建华, 冯起, 赵春彦, 王春林. 1958—2015年敦煌及周边地区极端降水事件的时空变化特征[J]. 高原气象, 2018, 37(2): 535-544.
[4] 姚俊强, 杨青, 毛炜峄, 韩雪云. 基于HYSPLIT4的一次新疆天山夏季特大暴雨水汽路径分析[J]. 高原气象, 2018, 37(1): 68-77.
[5] 崔园园, 覃军, 敬文琪, 谭桂容. GLDAS和CLDAS融合土壤水分产品在青藏高原地区的适用性评估[J]. 高原气象, 2018, 37(1): 123-136.
[6] 贺芳芳, 杨涵洧, 穆海振, 徐卫忠, 徐家良. 上海地区短历时强降水致灾阈值探索[J]. 高原气象, 2017, 36(6): 1567-1575.
[7] 韩熠哲, 马伟强, 王炳赟, 马耀明, 田荣湘. 青藏高原近30年降水变化特征分析[J]. 高原气象, 2017, 36(6): 1477-1486.
[8] 钱正安, 宋敏红, 吴统文, 蔡英. 世界干旱气候研究动态及进展综述(Ⅰ):若干主要干旱区国家的研究动态及联合国的贡献[J]. 高原气象, 2017, 36(6): 1433-1456.
[9] 钱正安, 宋敏红, 吴统文, 蔡英. 世界干旱气候研究动态及进展综述(Ⅱ):主要研究进展[J]. 高原气象, 2017, 36(6): 1457-1476.
[10] 王磊, 陈仁升, 宋耀选. 高寒山区面降水量获取方法及影响因素研究进展[J]. 高原气象, 2017, 36(6): 1546-1556.
[11] 杨冰韵, 吴晓京, 郭徵. 基于CloudSat资料的中国地区深对流云物理特征研究[J]. 高原气象, 2017, 36(6): 1655-1664.
[12] 孟庆兰, 赵赫, 高军凯, 卢筱茜, 刘良旭, 常学礼. 科尔沁地区年降水波动与空间分异特征[J]. 高原气象, 2017, 36(5): 1234-1244.
[13] 曹瑜, 游庆龙, 马茜蓉, 孟宪红. 青藏高原夏季极端降水概率分布特征[J]. 高原气象, 2017, 36(5): 1176-1187.
[14] 李蒙, 秦天玲, 刘少华, 卢亚静. 怒江上游TRMM 3B42V7降水产品资料时空验证及降水特征分析[J]. 高原气象, 2017, 36(4): 950-959.
[15] 胡顺起, 曹张驰, 陈滔. 山东省南部一次极端特大暴雪过程诊断分析[J]. 高原气象, 2017, 36(4): 984-992.