Please wait a minute...
高级检索
高原气象  2018, Vol. 37 Issue (5): 1277-1288    DOI: 10.7522/j.issn.1000-0534.2017.00070
论文     
秦岭北麓一次冷锋触发的短时强降水成因分析
王楠1, 赵强1, 井宇1, 张小雯2
1. 陕西省气象台, 陕西 西安 710015;
2. 国家气象中心, 北京 100081
Causation Analysis of a Short-Time Strong Rainfall Triggered by Cold Front at the Northern Piedmont of Qinling Mountains
WANG Nan1, ZHAO Qiang1, JING Yu1, ZHANG Xiaowen2
1. Shaanxi Meteorological Observatory, Xi'an 710014, shaanxi, China;
2. National Meteorological Centre, Beijing 100081, China
 全文: PDF(19163 KB)   HTML
摘要: 2015年8月3日秦岭北麓突发短时强降水,强度之大近年少有,并引发山洪造成人员伤亡。应用高空观测资料、地面加密资料、NCEP再分析资料,并结合风廓线雷达和多普勒天气雷达资料分析发现,此次降水过程具备较好的对流潜势及湿度条件,由冷锋系统触发,冷锋系统结构特点包括:锋区前近地面水汽含量>18 g·kg-1,锋面上升运动处于下沉运动之上、自由对流高度以下,850 hPa以下强冷平流造成该层浅薄逆温,锋前出现显著对流不稳定,均为对流性强降水发生创造有利条件。强冷平流带来水平锋生,对流不稳定产生垂直锋生,总体强锋生主要出现在对流层中下层,达到20×10-10 K·s-1·m-1。秦岭的阻挡作用使得冷锋过境转为偏西风,并与强降水正反馈形成超低空强西风带。偏西风与迎面山体配合对降水产生增幅作用,并为降水区带来水汽输送,但超低空西风较强容易破坏雷暴单体的垂直结构,又使得降水不能长时间维持。风廓线雷达能够探测到冷锋系统的精细化垂直风场结构,反映了冷锋的垂直结构信息,并较其他气象要素更能提前预判系统发展,具有较强的预报指示意义。
关键词: 锋生短时强降水风廓线雷达超低空急流    
Abstract: On August 3, 2015, a short time heavy rainfall suddenly occurred at the northern piedmont of Qinling Mountains, whose intensity has been rarely seen in recent years, triggered floods and caused casualties. Based on the analysis of aerological sounding data, intense surface observation data, NCEP reanalysis data, wind profile data and Doppler radar data, it was found that the precipitation process has good convective potential and humidity condition, and it was triggered by the cold front system. The structural features of the cold front system include:thewater vapor content was greater than 18 g·kg-1 near surface in front of the front zone, the frontal rising motion located above the sinking movement and below the free convection level, there was significant convection instability ahead of the front and so on, which are all favorable conditions for the occurrence of convective strong precipitation. The calculation result of frontogenetical function showed that strong frontogenesis(up to 20×10-10 K·s-1·m-1) of this process mainly occured in the middle and lower troposphere. The main reason is that the cold front system was accompanied by strong cold advection at 850 hPa which caused the horizontal frontogenesis; convective instability and the ascending motion caused vertical frontogenesis. In addition, the strong cold advection at 850 hPa caused shallow temperature inversion of the layer, so that convective instability energy can be concentrated, that is another favorable factor for the development of strong convection in the afternoon. The wind shifted to the west and formed ultra low level strong westerly wind with feedback of heavy rainfall after the cold front passed due to the blockage of Qinling Mountains. The westerly winds combining with the windward slope of Qinling Mountains made amplitude effect to the precipitation and brought low level water vapour transportation for the precipitation area, but the presence of the ultra low westerly wind causes the environment wind appeared negative vertical wind shear and was consistent with the moving direction of the storm. Under the influence of such wind field, the bottom of the storm which has just been established moving eastward faster than the top, and the vertical structure of the storm is difficult to maintain for a long time. The wind profile radar can detect the fine vertical wind structure of the cold front system, which reflects the vertical structure information of the cold front and predict weather system development much earlier than the other meteorological elements, which has a good indicative significance for the forecast.
Key words: Frontogenesis    short-time heavy rainfall    wind profile radar    ultra-low-level west wind
收稿日期: 2017-06-21 出版日期: 2018-10-19
ZTFLH:  P458.2  
基金资助: 公益性行业(气象)科研专项(GYHY201306005);国家自然科学基金项目(41561144004);中国气象局预报员专项(CMAYBY2016-072);陕西省气象局面上科研项目(2017M-3)
作者简介: 王楠(1976-),女,陕西西安人,高级工程师,主要从事强对流天气短时临近预报方法研究.E-mail:wnanw@163.com
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王楠
赵强
井宇
张小雯

引用本文:

王楠, 赵强, 井宇, 张小雯. 秦岭北麓一次冷锋触发的短时强降水成因分析[J]. 高原气象, 2018, 37(5): 1277-1288.

WANG Nan, ZHAO Qiang, JING Yu, ZHANG Xiaowen. Causation Analysis of a Short-Time Strong Rainfall Triggered by Cold Front at the Northern Piedmont of Qinling Mountains. Plateau Meteorology, 2018, 37(5): 1277-1288.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2017.00070        http://www.gyqx.ac.cn/CN/Y2018/V37/I5/1277

白晓平, 王式功, 赵璐, 等, 2016. 西北地区东部短时强降水概念模型[J]. 高原气象, 35(5):1248-1256. Bai X P, Wang S G, Zhao L, et al, 2016. Conceptual models of short-time heavy rainfall in the east of Northwest China[J]. Plateau Meteor, 35(5):1248-1256. DOI:10.7522/j. issn. 1000-0534.2015.00102.
常煜, 李秀娟, 陈超, 等, 2016. 内蒙古一次暴雨过程中尺度特征及成因分析[J]. 高原气象, 35(2):432-443. Chang Y, Li X J, Chen C, et al, 2016. Mesoscale characteristics of a rainstorm process in inner mongolia and its cause analysis[J]. Plateau Meteor, 35(2):432-443. DOI:10.7522/j. issn. 1000-0534.2014.00155.
陈敏, 陶祖钰, 郑永光, 等, 2007. 华南前汛期锋面垂直环流及其与中尺度对流系统的相互作用[J]. 气象学报, 65(5):785-791. Chen M, Tao Z Y, Zheng Y G, et al, 2007. The front-related vertical circulation occurring in the pre-flooding season in South China and its interaction with MCS[J]. Acta Meteor Sinica, 65(5):785-791.
陈涛, 代刊, 张芳华, 2013. 一次华北飑线天气过程中环境条件与对流发展机制研究[J]. 气象, 39(8):945-954. Chen T, Dai K, Zhang F H, 2013. Study on ambient condition and initialization mechanism of convection in a severe squall line storm event in North China[J]. Meteor Mon, 39(8):945-954.
古红萍, 马舒庆, 王迎春, 等, 2008. 边界层风廓线雷达资料在北京夏季强降水天气分析中的应用[J]. 气象科技, 26(3):300-304. Gu H P, Ma S Q, Wang Y C, et al, 2008. Application of Airda-3000 boundary wind profile radar in analyzing summer heavy rainfall in Beijing[J]. Meteor Sci Technol, 26(3):300-304.
郭英莲, 王继竹, 李才媛, 2014. 锋生作用对2011年梅汛期湖北暴雨的影响[J]. 气象, 40(1):86-93. Guo Y L, Wang J Z, Li C Y, et al, 2014. Effect of frontogenesis on rainstorm in Hubei During Meiyu Period 2011[J]. Meteor Mon, 40(1):86-93.
吕晓娜, 2017. 河南一次强对流天气潜势、触发与演变分析[J]. 高原气象, 36(1):195-206. Lu X N, 2017. Potential trend, trigger and evolution analysis of a thunderstorm case in Henan[J]. Plateau Meteor, 36(1):195-206. DOI:10.7522/j. issn. 1000-0534.2016.00023.
曲晓波, 张涛, 刘鑫华, 等, 2010. 舟曲"8·8"特大山洪泥石流灾害气象成因分析[J]. 气象, 36(10):102-105. Qu X B, Zhang T, Liu X H, et al, 2010. Analysis on the meterological causes for the 8 August 2010 massive mudslide in Zhouqu, Gansu province[J]. Meteor Mon, 36(10):102-105.
孙继松, 2005. 北京地区夏季边界层急流的基本特征及形成机理研究[J]. 大气科学, 29(3):445-452. Sun J S, 2005. A study of the basic features and mechanism of boundary layer jet in Beijing Area[J]. Chinese J Atmos Sci, 29(3):445-452.
孙继松, 陶祖钰, 2012. 强对流天气分析与预报中的若干基本问题[J]. 气象, 38(2):164-173. Sun J S, Tao Z Y, 2012. Some essential issues connected with severe convective weather analysis and forecast[J]. Meteor Mon, 38(2):164-173.
孙建华, 赵思雄, 傅慎明, 等, 2013.2012年7月21日北京特大暴雨的多尺度特征[J]. 大气科学, 37(3):705-718. Sun J H, Zhao S X, Fu S M, et al, 2013. Multi-scale characteristics of record heavy rainfall over Beijing area on July 21, 2012[J]. Chinese J Atmos Sci, 37(3):705-718.
陶诗言, 卫捷, 张小玲, 2008.2007年梅雨锋降雨的大尺度特征分析[J]. 气象, 34(4)3-15. Tao S Y, Wei J, Zhang X L, 2008. Large-scale features of the mei-yu front associated with heavy rainfall in 2007[J]. Meteor Mon, 34(4)3-15.
王婧羽, 崔春光, 王晓芳, 等, 2014.2012年7月21日北京特大暴雨过程的水汽输送特征[J]. 气象, 40(2):133-145. Wang J Y, Cui C G, Wang X F, et al, 2014. Analysisis on water vapor transport and budget of the severe torrential rain over Beijing region on 21 July 2012[J]. Meteor Mon, 40(2):133-145.
王楠, 李萍云, 井宇, 等, 2016. 黄土高原一次超级单体短时强降水中尺度分析[J]. 气象科学, 36(6):742-751. Wang N, Li P Y, Jing Y, et al, 2016. Mesoscale analysis of a heavy rainfall supercell storm on the Loess Plateau[J]. J Meteor Sci, 36(6):742-751.
徐珺, 毕宝贵, 谌芸, 2010. 济南7·18大暴雨中尺度分析研究[J]. 高原气象, 29(5):1218-1229. Xu J, Bi B G, Shen Y, 2010. Analysis on mesoscale mechanism of heavy rainstorm in Jinan on 18 July 2007[J]. Plateau Meteor, 29(5):1218-1229.
许东蓓, 苟尚, 肖玮, 等, 2018. 两种类型短时强降水形成机理对比分析-以甘肃两次短时强降水过程为例[J]. 高原气象, 37(2):524-534. Xu D B, Gou W, Xiao W, et al, 2018. Case study on the formation mechanism of two types of short-term strong rainfall occurred in Gansu Province[J]. Plateau Meteor, 37(2):524-534. DOI:10.7522/j. issn. 1000-0534.2017.00056.
俞小鼎, 2012.2012年7月21日北京特大暴雨成因分析[J]. 气象, 38(11):1313-1329. Yu X D, 2012. Investigation of Beijing extreme flooding event on 21 July 2012[J]. Meteor Mon, 38(11):1313-1329.
俞小鼎, 2013. 短时强降水临近预报的思路与方法[J]. 暴雨灾害, 32(3):202-209. Yu X D, 2013. Nowcasting thinking and method of flash heavy rain[J]. Torrential Rain Disaster, 32(3):202-209.
张霭琛, 2000. 现代气象观测[M]. 北京:北京大学出版社, 289-298. Zhang A C, 2000. Modern meteorological observation[M]. Beijing:Peking University Press, 289-298.
张小玲, 张涛, 刘鑫华, 等, 2010. 中尺度天气的高空地面综合图分析[J]. 气象, 36(7):143-150. Zhang X L, Zhang T, Liu X H, et al, 2010. Mesoscale weather chart analysis techinique[J]. Meteor Mon, 36(7):143-150.
赵强, 王建鹏, 王楠, 等, 2017a. 2012年夏季秦巴山区暴雨过程的地形作用诊断[J]. 气象科技, 45(1):139-147. Zhao Q, Wang J P, Wang N, et al, 2017a. Diagnostic study of topographic effect of a rainstorm in Qinba mountain in summer in 2012[J]. Meteor Sci Technol, 45(1):139-147.
赵强, 王楠, 李萍云, 等, 2017b. 两次陕北暴雨过程热力动力机制诊断[J]. 应用气象学报, (3):340-356. Zhao Q, Wang N, Li P Y, et al, 2017b. Diagnosis and analysis of thermal and dynamic mechanism of two rainstorm processes in northern Shaanxi[J]. J Appl Meteor Sci, (3):340-356.
赵玉春, 崔春光, 2010.2010年8月8日舟曲特大泥石流暴雨天气过程成因分析[J]. 暴雨灾害, 29(3):289-295. Zhao Y C, Cui C G, 2010. A study of rainstorm process triggering Zhouqu extremely mudslide on 8 August 2010[J]. Torrential Rain Disaster, 29(3):289-295.
郑婧, 孙素琴, 许爱华, 等, 2015. 强锋区结构的梅雨锋短时暴雨形成和维持机[J]. 高原气象, 34(4):1084-1094. Zheng J, Sun S Q, Xu A H, et al, 2015. Mechanism of formation and maintenance for a torrential rain on strong meiyu front[J]. Plateau Meteor, 34(4):1084-1094. DOI:10.7522/j. issn. 1000-0534.2014.00019.
[1] 赵宇, 蓝欣, 杨成芳. 一次江淮气旋极端雨雪过程的云系特征和成因分析[J]. 高原气象, 2018, 37(5): 1325-1340.
[2] 张亚男, 段旭. 冬季1月昆明准静止锋进退及维持的结构特征[J]. 高原气象, 2018, 37(5): 1375-1387.
[3] 邱贵强, 赵桂香, 董春卿, 王晓丽. 一次副热带高压边缘突发性暴雨的锋生及水汽特征分析[J]. 高原气象, 2018, 37(4): 946-957.
[4] 庄晓翠, 赵江伟, 李健丽, 李博渊, 谢秀琴. 新疆阿勒泰地区短时强降水流型及环境参数特征[J]. 高原气象, 2018, 37(3): 675-685.
[5] 徐沅鑫, 郭海燕, 马振峰. TRIGRS模型预测降雨型浅层滑坡的应用性评价[J]. 高原气象, 2018, 37(3): 815-825.
[6] 许东蓓, 苟尚, 肖玮, 孟丽霞, 沙宏娥, 狄潇泓, 石延召. 两种类型短时强降水形成机理对比分析——以甘肃两次短时强降水过程为例[J]. 高原气象, 2018, 37(2): 524-534.
[7] 刘晶, 李娜, 陈春艳. 新疆北部一次暖区暴雪过程锋面结构及中尺度云团分析[J]. 高原气象, 2018, 37(1): 158-166.
[8] 方德贤, 董新宁, 周国兵, 吴钲, 张勇, 黄安宁. 两种垂直风廓线的对比及应用Ⅱ:不同降水条件下风廓线特征[J]. 高原气象, 2017, 36(4): 971-983.
[9] 白晓平, 王式功, 赵璐, 尚可政, 刘晓潭, 明如军. 西北地区东部短时强降水概念模型[J]. 高原气象, 2016, 35(5): 1248-1256.
[10] 杨秀庄, 杜小玲, 吴古会, 汪超. 云贵高原东段初夏辐合线锋生型暴雨研究[J]. 高原气象, 2016, 35(4): 920-933.
[11] 董保举, 李建, 孙绩华, 徐安伦, 苏锦兰. 青藏高原东南缘低层风场垂直结构与变化特征[J]. 高原气象, 2016, 35(3): 597-607.
[12] 黄钰, 阮征, 郭学良, 何晖, 嵇磊. 垂直探测雷达对北京地区夏季降水分类统计[J]. 高原气象, 2016, 35(3): 745-754.
[13] 王伏村, 许东蓓, 姚延锋, 修韶宇, 郭萍萍, 阙龙凯, 韩树浦. 一次陇东大暴雨的锋生过程及倾斜涡度发展[J]. 高原气象, 2016, 35(2): 419-431.
[14] 赵文, 张强, 赵建华. 陇东南地区强降水过程与雷达VIL产品的定量关系研究[J]. 高原气象, 2016, 35(2): 528-537.
[15] 陈豫英, 陈楠, 谭志强, 郑晓辉. 热力作用对宁夏不同强度沙尘天气的影响[J]. 高原气象, 2015, 34(6): 1668-1676.
img

QQ群聊

img

官方微信