Please wait a minute...
高级检索
高原气象  2018, Vol. 37 Issue (3): 757-766    DOI: 10.7522/j.issn.1000-0534.2017.00072
论文     
高山区多时间尺度Anusplin气温插值精度对比分析
贾洋1,2, 崔鹏1,3
1. 中国科学院山地灾害与地表重点实验室/中国科学院水利部成都山地灾害与环境研究所, 四川 成都 610041;
2. 中国科学院大学, 北京 100049;
3. 中国科学院青藏高原地球科学卓越创新中心, 北京 100101
Contrastive Analysis of Temperature Interpolation at Different Time Scales in the Alpine Region by Anusplin
JIA Yang1,2, CUI Peng1,3
1. Key Lab of Mountain Hazards and Surface Process, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610044, Sichuan, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China
 全文: PDF 
摘要: 以中国地形起伏较大的横断山区为研究区,利用研究区内51个国家气象站点1960-2014年气温数据,以高程为协变量,采用Anusplin对不同时间分辨率(年代、年均、季节、月、日)的气温数据分布进行空间插值。通过气象站点交叉验证,结合绝对误差(平均绝对误差和均方根误差)和相对误差(平均相对误差)等量化指标,对比分析各个时间尺度气温数据的插值精度。结果表明:(1)夏季插值的绝对精度和相对精度最优,年代、年均和秋季气温插值的绝对精度水平相近,春季次之,冬季气温插值的绝对精度和相对精度最差。(2)在区域气候变化趋势方面,各个时间尺度气温插值数据的变化趋势和变化率与观测值结果一致。(3)年内各月均温和各月内日均温插值结果的相对精度和绝对精度在夏季月份精度最佳,在冬季月份精度最差,且各月内日均温插值结果在绝对精度和相对精度方面均低于各月均温插值结果的精度水平。分析显示,利用Anusplin的山区气温插值,气温海拔梯度性的优劣是造成不同时间尺度气温插值精度水平不一致的主要原因。
关键词: 气温插值多时间尺度高山区Anusplin    
Abstract: Anusplin is a common method that considering terrain effect during the temperature interpolation and it also has a high accuracy for temperature interpolation in the alpine area. But it is not clear whether there will be different accuracy based on the temperature data at different time scales by this method, especially for mountain temperature interpolation, which is very important for mountain science research. In order to determine the accuracy of temperature interpolation in mountain area at different time scales, we took the most complex mountain area(Hengduan Mountains, a mountain range in Sichuan and Yunnan) as study area. Based on the temperature data recorded by 51 meteorological stations during 1960-2014 and SRTM in the study area, Anusplin was used to interpolate regional temperature at different time scales (decadal, annual, seasonal, monthly, and daily). With the cross-validation and comparison method, the interpolation accuracy of temperature at each time scale was compared by mean absolute error (MAE), mean relative error (MRE) and root mean square error (RMSE). The results showed that:(1) The interpolation of summer temperature shows the minimum value in MAE, MRE and RMSE(0.41℃, 0.03℃ and 0.66℃), while the interpolation of winter temperature shows maximum value in MAE, MRE and RMSE (0.79℃, 0.81℃ and 1.02℃). The MAE value and RMSE value of decadal, annual and autumn temperature interpolation are similar. (2) The temperature interpolation by using Anusplin can well express the climate trends at decadal, annual and seasonal scale. The trend obtained from interpolation data are consistent with the tendency calculated from observed data, and their change rate shows no discrepancy[error <0.1℃·(10a)-1]. (3) The MAE, MRE and RMSE value for daily and monthly temperature interpolations in summer are also minimum while in winter are maximum. In addition, the MAE, MRE and RMSE value of daily temperature interpolation are higher than the monthly temperature interpolation. Especially for the mean relative error in winter, the value of daily temperature interpolation error is about twice than that of monthly temperature interpolation error. It is worth noting that the inconsistency of temperature interpolation accuracy at decadal, annual and seasonal scale is mainly attributed to the difference in the relationship between temperature and elevation at different time scale. Moreover, the accuracy error of elevation data and the regional special climatic condition can also cause error for temperature interpolation by using Anusplin.
Key words: Temperature interpolation    multi-time scales    alpine area    Anusplin
收稿日期: 2017-05-11 出版日期: 2018-06-24
ZTFLH:  P413  
基金资助: 国家自然基金国际合作与交流项目(41520104002);中国科学院前沿科学重点研究项目(QYZDY-SSW-DQC006);中国科学院科技服务网络计划(STS计划)项目(KFJ-EW-STS-094)
通讯作者: 崔鹏(1957),男,陕西西安人,研究员,主要从事泥石流等山地灾害研究.E-mail:pengcui@imde.ac.cn     E-mail: pengcui@imde.ac.cn
作者简介: 贾洋(1988),男,新疆鄯善人,博士研究生,主要从事遥感与GIS应用及山地灾害环境效应研究.E-mail:8394186@163.com
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
贾洋
崔鹏

引用本文:

贾洋, 崔鹏. 高山区多时间尺度Anusplin气温插值精度对比分析[J]. 高原气象, 2018, 37(3): 757-766.

JIA Yang, CUI Peng. Contrastive Analysis of Temperature Interpolation at Different Time Scales in the Alpine Region by Anusplin. Plateau Meteorology, 2018, 37(3): 757-766.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2017.00072        http://www.gyqx.ac.cn/CN/Y2018/V37/I3/757

Cui P, Jia Y, 2015.Mountain hazards in the Tibetan Plateau:research status and prospects[J].National Science Review, 2(4):397-399.
Hock R, 2003.Temperature index melt modelling in mountain areas[J].J hydrol, 282(1):104-115.
Hijmans R J, Cameron S E, Parra J L, et al, 2005.Very high resolution interpolated climate surfaces for global land areas[J].Int J climatol, 25(15):1965-1978.
Hutchinson M F, 1991.The application of thin-plate smoothing splines to continent-wide data simulation[J].BMRC Res Rep Ser, 28.
Hutchinson M F, Xu T, 2013.Anusplin version 4.4 user guide[M].Canberra:The Australian National University.
Kohavi R, 1995.A study of cross-validation and bootstrap for accuracy estimation and model selection[C]//Ijcai, 14(2):1137-1145.
McKenney D W, Pedlar J H, Papadopol P, et al, 2006.The development of 19012000 historical monthly climate models for Canadaand the United States[J].Agricultural and Forest Meteorology, 138(1):69-81.
Régnière J, 1996.Generalized approach to landscape-wide seasonal forecasting with temperature-driven simulation models[J].Environmental Entomology, 25(5):869-881.
Thomas A, 2002.Seasonal and spatial variation of evapotranspiration in the mountains of Southwest China[J].J Mount Res, 20(4):385-393.
郭建平, 刘欢, 安林昌, 等, 2016.20012012年青藏高原积雪覆盖率变化及地形影响[J].高原气象, 35(1):24-33.Guo J P, Liu H, An L C, et al.2016.Study on variation of snow cover and its orographic impact over Qinghai-Xizang Plateau during 20012012[J].Plateau Meteor, 35(1):24-33.DOI:10.7522/j.issn.1000-0534.2014.00140.
高世仰, 张杰, 罗琦, 2017.青藏高原非均匀下垫面热力输送系数的估算[J].高原气象, 36(3):596-609.Gao S Y, Zhang J, Luo Q, 2017.Estimation of the heat transfer coefficient over inhomogeneous underlying surface on the Qinghai-Tibetan Plateau[J].Plateau Meteor, 36(3):596-609.DOI:10.7522/j.issn.1000-0534.2016.00060.
李月臣, 何志明, 刘春霞, 2014.基于站点观测数据的气温空间化方法评述[J].地理科学进展, 3(8):1019-1028.Li Y C, He Z M, Liu C X, 2014.Review on spatial interpolation methods of temperature data from meteorological stations[J].Progress in Geography, 3(8):1019-1028.
刘志红, 杨勤科, 李锐, 等, 2008.基于ANUSPLIN的时间序列气象要素空间插值[J].西北农林科技大学学報 (自然科学版), 36(10):227-234.Liu Z H, Yang Q K, Li R, et al, 2008.Interpolation for time series of meteorological variables using ANUSPLIN[J].Journal of Northwest A&F University(Nat.Sci.Ed.), 36(10):227-234.
刘志红, 杨勤科, 李锐, 等, 2006.基于5变量局部薄盘光滑样条函数的蒸发空间插值[J].中国水土保持科学, 4(6):23-30.Liu Z H, Yang Q K, Li R, et al, 2006.Modeling spatial distribution of pan evaporation based on quinat-variate thin plate spline function[J].Science of Soil and Water Conservation, 4(6):23-30.
刘正佳, 于兴修, 王丝丝, 等, 2012.薄盘光滑样条插值中三种协变量方法的降水量插值精度比较[J].地理科学进展, 31(1):56-62.Liu Z J, Yu X X, Wang S S, et al, 2012.Comparative analysis of three covariates methods in Thin-plate smoothing splines for interpolating precipitation[J].Progress in Geography, 31(1):56-62.
钱永兰, 吕厚荃, 张艳红, 2010.基于ANUSPLIN软件的逐日气象要素插值方法应用与评估[J].气象与环境学报, 26(2):7-15.Qian Y L, Lü H Q, Zhang Y H, 2010.Application and assessment of spatial interpolation method on daily meteorological elements based on ANUSPLIN software[J].J Meteor Environ, 26(2):7-15.
沈艳, 熊安元, 施晓晖, 等, 2008.中国55年来地面水汽压网格数据集的建立及精度评价[J].气象学报, 66(2):283-291.Shen Y, Xiong A Y, Shi X H, et al, 2008.Development of the grid-based ground water vapor pressure over China in recent 55 years and its accuracy evaluation[J].Acta Meteor Sinica, 66(2):283-291.
谭剑波, 李爱农, 雷光斌, 2016.青藏高原东南缘气象要素Anusplin和Cokriging空间插值对比分析[J].高原气象, 35(4):875-886.Tan J B, Li A N, Lei G B, 2016.Contrast on ANUSPLIN and Cokriging meteorological spatial interpolation in southeastern margin of Qinghai-Xizang Plateau[J].Plateau Meteor, 35(4):875-886.DOI:10.7522/j.issn.1000-0534.2015.00037.
张洪亮, 邓自旺, 2002.基于DEM的山区气温空间模拟方法[J].山地学报, 20(3):360-364.Zhang H L, Deng Z W, 2002.A method of spatial simulating of temperature based digital elevation model(DEM) in mountain area[J].J Mount Sci, 20(3):360-364.
张一平, 张昭辉, 何云玲, 2004.岷江上游气候立体分布特征[J].山地学报, 22(2):179-183.Zhang Y P, Zhang S H, He Y L, 2004.Distribution of climatic elements in the upper reaches of Minjiang river[J].J Mount Sci, 22(2):179-183.
张长灿, 李栋梁, 王慧, 等, 2017.青藏高原春季地表感热特征及其对中国东部夏季雨型的影响[J].高原气象, 36(1):13-23.Zhang C C, Li D L, Wang H, et al, 2017.Characteristics of the surface sensible heat on the Qinghai-Xizang Plateau in the spring and its influences on the summertime rain fall pattern over the eastern China[J].Plateau Meteor, 36(1):13-23.DOI:10.7522/j.issn.1000-0534.2016.00028.
周盼盼, 张明军, 王圣杰, 等, 2017.高亚洲地区夏季0℃层高度变化及其影响特征研究[J].高原气象, 36(2):371-383.Zhou P P, Zhang M J, Wang S J, et al, 2017.Variation and its influences of 0℃ isotherm height in summer over high Asia[J].Plateau Meteor, 36(2):371-383.DOI:10.7522/j.issn.1000-0534.2016.00048.
[1] 余予, 任芝花, 孟晓艳. 中国结冰现象序列的建立及气候变化分析[J]. 高原气象, 2018, 37(2): 553-559.
[2] 赵煜飞, 张强, 余予, 杨贵. 中国小时风速数据集研制及在青藏高原地区的应用[J]. 高原气象, 2017, 36(4): 930-938.
[3] 李京校, 郭凤霞, 扈海波, 李如箭, 钱慕晖, 肖稳安. 北京及其周边地区SAFIR和ADTD闪电定位资料对比分析[J]. 高原气象, 2017, 36(4): 1115-1126.
[4] 万晓敏 田伟红 何晓欢. 加密FY-2G云导风质量评估及其在GRAPES_RAFS系统中的应用分析[J]. 高原气象, 2017, 36(1): 0-0.
[5] 焦鹏程, 王振会, 楚志刚, 韩静, 张帅, 朱艺青. 基于傅里叶谱分析的天气雷达图像插值方法[J]. 高原气象, 2016, 35(6): 1683-1693.
[6] 谭剑波, 李爱农, 雷光斌. 青藏高原东南缘气象要素Anusplin和Cokriging空间插值对比分析[J]. 高原气象, 2016, 35(4): 875-886.
[7] 吴翀, 刘黎平, 吴海涛. 多部X波段天气雷达测量偏差分布及组网拼图结果分析[J]. 高原气象, 2016, 35(3): 823-833.
[8] 闵文彬, 李跃清, 周纪. 青藏高原东侧MODIS地表温度产品验证[J]. 高原气象, 2015, 34(6): 1511-1516.
[9] 赵煜飞, 朱江. 近50年中国降水格点日值数据集精度及评估[J]. 高原气象, 2015, 34(1): 50-58.
[10] 叶冬, 申彦波, 杜江, 艾生, 程兴宏. 吐鲁番气象站周边典型建筑对日照时数的影响分析[J]. , 2014, 33(6): 1712-1721.
[11] 张涛, 苗春生, 王新. LAPS与STMAS地面气温融合效果对比试验[J]. 高原气象, 2014, 33(3): 743-752.
[12] 戴晓燕, 过仲阳, 吴健平, 黎薇, 林珲. 1998年夏季青藏高原上东移MCS环境场特征的聚类分析[J]. 高原气象, 2007, 26(4): 701-707.
[13] 曹晓钟, 王强. 神经网络在气象观测资料优化中的应用研究[J]. 高原气象, 2001, 21(1): 96-101.
[14] 宋超辉, 孙安健. 非均一性气温气候序列订正方法的研究[J]. 高原气象, 1995, 14(2): 215-220.
[15] 吴蔚, 梁卓然, 刘校辰. CDF-T方法在站点尺度日降水预估中的应用[J]. 高原气象, 2018, 37(3): 796-805.