Please wait a minute...
高级检索
高原气象  2018, Vol. 37 Issue (4): 1074-1082    DOI: 10.7522/j.issn.1000-0534.2017.00086
论文     
舟山跨海大桥一次强冷空气过程的精细化风场模拟
顾婷婷1, 李晓丽2, 刘丹妮1, 潘娅英1
1. 浙江省气象服务中心, 浙江 杭州 310017;
2. 舟山市气象服务中心, 浙江 舟山 316021
Simulation of Highly Resolved Wind Field on a Severe Cold Air Case over Zhoushan Sea-Crossing Bridge
GU Tingting1, LI Xiaoli2, LIU Danni1, PAN Yaying1
1. Zhejiang Meteorological Service Center, Hangzhou 310017, Zhejiang, China;
2. Zhoushan Meteorological Service Center, Zhoushan 316021, Zhejiang, China
 全文: PDF 
摘要: 以NCEP FNL再分析资料作为初始场和边界场,利用TAPM模式对2015年11月24-27日发生在舟山跨海大桥的一次强冷空气大风过程进行水平分辨率300 m×300 m的数值模拟试验,并采用大桥上的道路气象站观测资料进行误差检验,分析此次大风过程中舟山跨海大桥各路段的横风分布特征。结果表明TAPM模式对于此次大风过程的舟山跨海大桥桥面风速、风向以及横风风速都具有较好的模拟能力,且模式对于过程最大风速的模拟一致性较好,但陆地站点风速模拟值存在偏大的现象。此次冷空气大风影响过程中,金塘大桥中段、西堠门大桥东段以及甬舟高速册子岛段东段为强横风的主要影响路段,横风风速大于11 m·s-1,6级以上的强横风影响时间达33 h以上。而桃夭门大桥到舟山路段虽然过程平均风速较高,但横风影响较弱,横风风速仅为2~7 m·s-1。值得注意的是,甬舟高速金塘岛段自东向西的弯道路段以及桃夭门大桥转向册子岛的弯道路段口,会存在横风突然增大的风险,极易对安全行车造成不利影响。
关键词: TAPM精细化横风数值模拟    
Abstract: Based on the NCEP FNL reanalysis data, the TAPM model was used to simulate the severe cold air case with a high spatial resolution of 300 m×300 m over Zhoushan sea-crossing bridge from 24 to 27 November 2015. The results of simulation were verified with the observational data from traffic meteorological observation stations on the bridge. Thus, the temporal and spatial distribution characteristics of cross wind at different sections of Zhoushan sea-crossing bridge were analyzed. The results show that TAPM model has a good performance in simulating the evolution and distribution characters of wind fields over the Zhoushan sea-crossing bridge during the severe cold air event. The variation trends of wind speed, wind direction and cross wind speed in every hour are near to the observations, as well as the wind speed and the time when the maximum wind happens. However, the model underestimates the wind speed at the land station. During the process of this severe cold air, the strong cross wind mainly influences the middle section of Jintang bridge, the east section of Xihoumen bridge and Cezi isle, where the cross wind speed is higher than 11 m·s-1. The duration time of the strong cross wind force scale over 6 is more than 33 hours. Although the mean wind speed from Taoyaomen bridge to Zhoushan sections is high, the cross wind speed is much smaller and only about 2~7 m·s-1, the negative impact of the high cross wind is the least compared with other sections. What should be paid attention to is that the risk of cross wind will suddenly increase in the two curve road sections in the east-west direction of Jintang isle of the Yongzhou highway and the ramp between the Taoyaomen bridge and the Cezi isle, which may bring potential traffic hazard and requires additional driving attention. The research provides an effective and feasible way to improve the forecasting and warning of highly resolved wind field and provide better management for the Zhoushan sea-crossing bridge traffic safety.
Key words: TAPM    highly resolved    cross wind    numerical simulation
收稿日期: 2017-08-12 出版日期: 2018-08-22
:  P456  
基金资助: 浙江省科技厅公益性技术研究社会发展重点项目(2014C23003)
通讯作者: 李晓丽(1966-),女,浙江镇海人,高级工程师,主要从事海洋气象服务研究.E-mail:1063498771@qq.com     E-mail: 1063498771@qq.com
作者简介: 顾婷婷(1985-),女,江苏兴化人,高级工程师,主要从事专业气象服务产品研究.E-mail:gutt1985@yeah.net
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
顾婷婷
李晓丽
刘丹妮
潘娅英

引用本文:

顾婷婷, 李晓丽, 刘丹妮, 潘娅英. 舟山跨海大桥一次强冷空气过程的精细化风场模拟[J]. 高原气象, 2018, 37(4): 1074-1082.

GU Tingting, LI Xiaoli, LIU Danni, PAN Yaying. Simulation of Highly Resolved Wind Field on a Severe Cold Air Case over Zhoushan Sea-Crossing Bridge. Plateau Meteorology, 2018, 37(4): 1074-1082.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2017.00086        http://www.gyqx.ac.cn/CN/Y2018/V37/I4/1074

Coleman S A, Baker C J, 1990. High sided road vehicles in cross winds[J]. Journal of Wind Engineering and Industrial Aerodynamics, 36(2):1382-1392. DOI:10.1016/0167-6105(90)90134-X.
Cheng W L, Lai L W, Den W, et al, 2014. The relationship between typhoons' peripheral circulation and ground-level ozone concentrations in central Taiwan[J]. Environ Monit Assess, 186(2):791-804. DOI:10.1007/s10661-013-3417-7.
Hurley P, Physick W, Luhar K, 2005. TAPM:A practical approach to prognostic meteorological and air pollution modelling[J]. Environ Modelling & Software, 20(6):737-752. DOI:10.1016/j. envsoft. 2004.04.006.
Lin T, Jun F M, De L C, 2009. Performance of TAPM against MM5 at urban scale during GÖTE2001 campaign[J]. Boreal Environment Research, 14(2):338-350.
Luhar A K, Hurley P J, 2004. Application of a prognostic model TAPM to sea-breeze flows, surface concentrations, and fumigating plumes[J]. Atmos Environ, 19(6):591-601. DOI:10.1016/j. envsoft. 2003.08.011.
Sedarous J A, Soliman A, 2007. Modeling and calibration of an aerodynamic cross-wind gust test facility[C]//SAE Technical Pape.
Thatcher M, Hurley P, 2010. A customisable downscaling approach for local-scale meteorological and air pollution forecasting:Performance evaluation for a year of urban meteorological forecasts[J]. Environmental Modelling& Software, 25(1):82-92. DOI:10.1016/j. envsoft. 2009.07.014.
董珂洋, 陆百川, 2008. 恶劣天气对车辆安全行驶的影响[J]. 重庆交通大学学报(社科版), 8(6):24-26. Dong K Y, Lu B C, 2008. Influences of bad weather to movements of vehicles[J]. Journal of Chongqing Jiao Tong University (Social Sciences Edition) 8(6):24-26. DOI:10.3969/j. issn. 1674-0297.2008.06.008.
韩宝睿, 范伟康, 宋越, 等, 2015. 横风作用下公路行车安全限速模型研究[J]. 公路, 10:46-50. Han B R, Fan W K, Song Y, et al, 2015. Research on speed limit model or driving safety on highway with crosswind[J]. Highway, 10:46-50.
李磊, 陈柏纬, 杨琳, 等, 2013. 复杂地形与建筑物共存情况下的风场模拟研究[J]. 热带气象学报, 29(2):315-320. Li L, Chen P W, Yang L, et al, 2013. Study on numerical simulation of wind field around buildings over complex terrain[J]. J Trop Meteor, 29(2):315-320. DOI:10.3969/j. issn. 1004-4965.2013.02.016.
李晓霞, 黄涛, 王兴, 等, 2017. 兰州新区近地层风场时空特征分析[J]. 高原气象, 36(4):1001-1009. Li X X, Huang T, Wang X, et al, 2017. Analysis of characters of wind field in Lanzhou new district[J]. Plateau Meteor, 36(4):1001-1009. DOI:10.7522/j. issn. 1000-0534.2016.00092.
刘传凤, 1990. 我国寒潮气候评价[J]. 气象, 16(12):39-42. Liu C F, 1990. Climatic assessment of cold wave in China[J]. Meteor Mon, 16(12):39-42. DOI:10.7519/j. issn. 1000-0526.1990.12.009.
穆海振, 徐家良, 柯晓新, 等, 2006. 高分辨率数值模式在风能资源评估中的应用初探[J]. 应用气象学报, 17(2):152-159. Mu H Z, Xu J L, Ke X X, et al, 2006. Application of high resolution numerical model to wind energy potential assessment[J]. J Appl Meteor Sci, 17(2):152-159. DOI:10.3969/j. issn. 1001-7313.2006.02.004.
穆海振, 徐家良, 杨永辉, 2008. 数值模拟在上海海上风能资源评估中的应用[J]. 高原气象, 27(增刊):196-202. Mu H Z, Xu J L, Yang Y H, 2008. An application of numerical modeling to Shanghai offshore wind energy resource assessment[J]. Plateau Meteor, 27(Suppl):196-202.
潘新民, 祝学范, 黄智强, 等, 2012. 新疆百里风区地形与大风的关系[J]. 气象, 38(2):234-237. Pan X M, Zhu X Y, Huang Z Q, et al, 2012. The relation between the strong wind region along one hundred kilometer of railway and the topography in Xinjiang[J]. Meteor Mon, 38(2):234-237.
田林, 许金良, 张莹, 2015. 横风作用下载重汽车在复杂路段运行的安全模型[J]. 长安大学学报(自然科学版), 35(3):21-26. Tian L, Xu J L, Zhang Y, 2015. Operational security model of truck in complex sections under cross wind[J]. Journal of Chang' an University (Natural Science Edition), 35(3):21-26.
吴诚, 范伟康, 韩宝睿, 等, 2015. 横风作用下安全车速的防真分析[J]. 现代交通技术, 12(6):89-91. Wu C, Fan W K, Han B R, et al, 2015. Simulation analysis of safe speed under the action of crosswind[J]. Modern Transportation Technology, 12(6):89-91.
王兴, 马鹏里, 张铁军, 等, 2012. MM5模式及CALMET模型对甘肃酒泉地区风能资源的数值模拟[J]. 高原气象, 31(2):428-435. Wang X, Ma P L, Zhang T J, et al, 2012. Research of wind energy resource in Jiuquan region using MM5 and CALMET pattern[J]. Plateau Meteor, 31(2):428-435.
徐家良, 穆海振, 2009. 台风影响下上海近海风场特性的数值模拟分析[J]. 热带气象学报, 25(3):281-286. Xu J L, Mu H Z, 2009. Numerical simulation and analysis of offshore wind field features in Shang Hai under the influence of typhoon[J]. J Trop Meteor, 25(3):281-286. DOI:10.3969/j. issn. 1004-4965.2009.03.004.
许金良, 王恒, 赵丽苹, 等, 2014. 考虑横风作用的公路平曲线最小半径研究[J]. 中国公路学报, 27(1):38-43. Xu J L, Wang H, Zhao L P, et al, 2014. Research on minimum radius of highway horizontal curve with crosswind considered[J]. China Journal of Highway and Transport, 27(1):38-43. DOI:10.3969/j. issn. 1001-7372.2014.01.006.
许杨, 陈正洪, 杨宏青, 等, 2013. 风电场风电功率短期预报方法比较[J]. 应用气象学报, 2013, 24(5):625-630. Xu Y, Chen Z H, Yang H Q, et al, 2013. Comparison of short-term forecast method of wind power in wind farm[J]. J Appl Meteor Sci, 2013, 24(5):625-630. DOI:10.3969/j. issn. 1001-7313.2013.05.012.
许霖, 姚蓉, 王晓雷, 等, 2017. 湖南省雷暴大风的时空分布和变化特征[J]. 高原气象, 36(4):993-1000. Xu L, Yao R, Wang X L, et al, 2017. Study of temporal-spatial distribution and variation characteristics of thunderstorm gales in Hunan[J]. Plateau Meteor, 36(4):993-1000. DOI:10.7522/j. issn. 1000-0534.2016.01.0088.
张弛, 王东海, 巩远发, 2015. 基于WRF/CALMET的近地面精细化风场的动力模拟实验研究[J]. 气象, 41(1):34-44. Zhang C, Wang D G, Gong Y F, 2015. Dynamic modeling study of highly resolved near-surface wind based on WRF/CALMET[J]. Meteor Mon, 41(1):34-44. DOI:10.7519/j. issn. 1000-0526.2015.01.004.
[1] 罗雄, 李国平. 一次高原切变线过程的数值模拟与阶段性结构特征[J]. 高原气象, 2018, 37(2): 406-419.
[2] 马申佳, 陈超辉, 何宏让, 李湘, 李毅. 基于BGM的对流尺度集合预报试验及其检验[J]. 高原气象, 2018, 37(2): 495-504.
[3] 周宁芳, 贾小龙. NCEP CFSv2对北半球夏季中高纬阻塞高压的预测检验[J]. 高原气象, 2018, 37(2): 469-480.
[4] 康延臻, 靳双龙, 彭新东, 杨旭, 尚可政, 王式功. 单双参云微物理方案对华北“7·20”特大暴雨数值模拟对比分析[J]. 高原气象, 2018, 37(2): 481-494.
[5] 于波, 荆浩, 孙继松, 张文龙. 北京夏季一次罕见偏南大风天气的成因分析[J]. 高原气象, 2017, 36(6): 1674-1681.
[6] 王瑞文, 龚建东, 韩威, 张林. AMDAR温度资料的偏差订正及对GRAPES系统的影响[J]. 高原气象, 2017, 36(5): 1346-1356.
[7] 薛童, 管兆勇, 徐建军, 邵旻. ATMS和CrIS卫星资料同化对青藏高原天气预报的影响[J]. 高原气象, 2017, 36(4): 912-929.
[8] 摆玉龙, 张转花, 尤元红, 刘颖娟. 一种基于鲁棒集合滤波的资料同化方法[J]. 高原气象, 2017, 36(4): 1052-1059.
[9] 孙兴池, 韩永清, 李静, 康桂红, 万明波. 垂直运动对雾-霾及空气污染过程的影响分析[J]. 高原气象, 2017, 36(4): 1106-1114.
[10] 张俊兰, 彭军. 北疆春季降水相态转换判识和成因分析[J]. 高原气象, 2017, 36(4): 939-949.
[11] 李哲, 李国翠, 刘黎平, 杨吉. 飑线优化识别及雷暴大风分析[J]. 高原气象, 2017, 36(3): 801-810.
[12] 庄潇然, 闵锦忠, 武天杰, 邓旭, 蔡沅辰. 风暴尺度集合预报中不同初始扰动的多尺度发展特征研究[J]. 高原气象, 2017, 36(3): 811-825.
[13] 陈申鹏, 孙国武, 曾鼎文. 大气低频系统与华南强降水过程的研究[J]. 高原气象, 2017, 36(2): 480-490.
[14] 申红艳, 陈丽娟, 胡泊, 乔少博, 张调风. 西北中部夏季降水主要空间型及环流特征[J]. 高原气象, 2017, 36(2): 455-467.
[15] 蔡沅辰, 闵锦忠, 庄潇然. 不同随机物理扰动方案在一次暴雨集合预报中的对比研究[J]. 高原气象, 2017, 36(2): 407-423.