Please wait a minute...
高级检索
高原气象  2018, Vol. 37 Issue (3): 642-650    DOI: 10.7522/j.issn.1000-0534.2017.00091
论文     
近10年青藏高原中东部地表相对湿度减少成因分析
谢欣汝, 游庆龙, 林厚博
南京信息工程大学气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室/气象灾害预报预警与评估协同创新中心, 江苏 南京 210044
Surface Relative Humidity Decreases and Its Cause over the Qinghai-Tibetan Plateau in Recent Ten Years
XIE Xinru, YOU Qinglong, LIN Houbo
Key Laboratory of Meteorological Disaster, Ministry of Education(KLME)/Joint International Research Laboratory of Climate and Environment Change(ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters(CIC-FEMD);Nanjing University of Information Science and Technology(NUIST), Nanjing 210044, Jiangsu, China
 全文: PDF 
摘要: 利用青藏高原(下称高原)71个站点地表气温和相对湿度的观测资料分析了高原在2000年之后相对湿度和地表气温的变化特征,并结合欧洲中期天气预报中心(ECMWF)提供的1979-2014年ERA-Interim再分析资料分析了相对湿度在近10年的减弱原因。结果表明:高原地表气温呈现持续增温趋势,而地表的相对湿度却在2000年之后迅速减小。对高原及周边风场和整层水汽输送通量的变化分析可以看出,高原的南边界是主要的水汽输入边界,2000年之后随着风场的减弱导致由孟加拉湾携带水汽穿过南边界进入高原的动力减弱,致使高原整体的水汽输送减弱,进入高原的水汽量减少。最后根据Clausius-Clapeyron方程,解释了相对湿度减弱的原因:高原地表空气温度持续增加,空气中所能容纳的水汽能力增强,而此时外界向高原提供的水汽并没有相应增加反而呈现减弱的态势,这样实际存在的水汽占所能容纳水汽的比值逐渐降低,即相对湿度呈现减少的趋势。
关键词: 青藏高原相对湿度地表气温水汽输送通量    
Abstract: Based on the monthly surface relative humidity and surface temperature data of 71 stations over the Qinghai-Tibetan Plateau (QTP) provided by the National Meteorological Information Center/China Meteorological Administration, the changes of surface relative humidity and surface temperature and the reasons of the surface relative humidity decreases in recent ten years over the QTP were studied by using the European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Reanalysis data from 1979 to 2014. The results show that the surface temperature over the QTP is sustained warming, but the surface relative humidity has rapidly decreased after 2000. The analysis of the variation of vertically integrated water vapor transport flux over the QTP and its surroundings shows that water vapor is mainly transported into the QTP from the southern boundary, and the water vapor into the QTP carried by wind from the Bay of Bengal is decreased after 2000 due to the weaker wind speed. This could result in the decrease of the vertically integrated water vapor transport flux and the water vapor into the QTP. According to the Clausius-Clapeyron relationship, the reasons of the surface relative humidity decrease over the QTP in recent ten years have been explained:as the surface temperature continues to increase, the ability of water contained by the air become stronger. However, the water vapor into the QTP is not increased correspondingly but decreased. It could cause the decreased rate between the existences of water vapor and the saturated water vapor. That is to say, the surface relative humidity over the QTP is decreased.
Key words: Qinghai-Tibetan Plateau    the surface relative humidity    the surface temperature    water vapor transport flux
收稿日期: 2017-08-22 出版日期: 2018-06-24
ZTFLH:  P467  
基金资助: 国家重点研发计划项目(2016YFA0601702);国家自然科学基金项目(41771069);江苏省杰出青年基金项目(BK20140047);江苏高校优势学科建设工程资助项目(PAPD)
通讯作者: 游庆龙(1980),男,湖南岳阳人,教授,从事青藏高原现代气候环境变化研究工作.E-mail:yqingl@126.com     E-mail: yqingl@126.com
作者简介: 谢欣汝(1994),女,四川南充人,硕士研究生,主要从事青藏高原降水及其水汽输送研究.E-mail:kineral@163.com
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
谢欣汝
游庆龙
林厚博

引用本文:

谢欣汝, 游庆龙, 林厚博. 近10年青藏高原中东部地表相对湿度减少成因分析[J]. 高原气象, 2018, 37(3): 642-650.

XIE Xinru, YOU Qinglong, LIN Houbo. Surface Relative Humidity Decreases and Its Cause over the Qinghai-Tibetan Plateau in Recent Ten Years. Plateau Meteorology, 2018, 37(3): 642-650.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2017.00091        http://www.gyqx.ac.cn/CN/Y2018/V37/I3/642

Dee D P, Uppala S M, Simmons A J, et al, 2011.The ERA-Interim reanalysis:configuration and performance of the data assimilation system[J].Quart J Roy Meteor Soc, 137(656):553-597.
Feng L, Zhou T J, 2012.Water vapor transport for summer precipitation over the Tibetan Plateau:Multidata set analysis[J].J Geophys Res Atmos, 117(D20):85-99.
Gao Y H, Cuo L, Zhang Y X, 2014.Changes in moisture flux over the Tibetan Plateau during 19792011 and possible mechanisms[J].J Climate, 27:1876-1893.
Hardwick J R, Westra S, Sharma A, 2011.Observed relationships between extreme sub-daily precipitation, surface temperature, and relative humidity[J].Geophys Res Lett, 37(22):L22805.
Lin H B, You Q L, Jiao Y, et al, 2015.Spatial and temporal characteristics of the precipitation over the Tibetan Plateau from 1961 to 2010 based on high resolution grid-observation dataset[J].J Natural Resour, 30(2):271-281.
Liu X D, Chen B D, 2000.Climatic warming in the Tibetan Plateau during recent decades[J].Int J Climatol, 20(14):1729-1742.
Isaac V, Wijngaarden W A V, 2012.Surface water vapor pressure and temperature trends in North America during 19482010[J].J Climate, 25(10):3599-3609.
Simmons A J, Willett K M, Jones P D, et al, 2010.Low-frequency variations in surface atmospheric humidity, temperature, and precipitation:Inferences from reanalyses and monthly gridded observational datasets[J].J Geophys Res, l15(D1):1-21.
Wu S H, Yin Y H, Du Z, et al, 2007.Climatic trends over the Tibetan Plateau during 19712000[J].J Geographical Sci, 17(2):141-151.
Xu X D, Shi X Y, Wang Y Q, et al, 2008.Data analysis and numerical simulation of moisture source and transport associated with summer precipitation in the Yangtze River Valley over China[J].Meteorology & Atmospheric Physics, 100(1-4):217-231.
You Q L, Min J Z, Lin H B, et al, 2015a.Observed climatology and trend in relative humidity in the central and eastern Tibetan Plateau[J].J Geophys Res Atmos, 120(9):3610-3621.
You Q L, Min J Z, Zhang W, et al, 2015b.Comparison of multiple datasets with gridded precipitation observations over the Tibetan Plateau[J].Climate Dyn, 45:791-806.
Zhou S W, Wu P, Wang C H, et al, 2012.Spatial distribution of atmospheric water vapor and its relationship with precipitation in summer over the Tibetan Plateau[J].Acta Geographica Sinica, 22(5):795-809.
达瓦次仁, 2010.全球气候变化对青藏高原水资源的影响[J].西藏研究(4):90-99.Dawa C R, 2010.Impacts of global warming on the water resources of Tibetan Plateau[J].Tibetan Studies (4):90-99.
丁一汇, 胡国权, 2003.1998年中国大洪水时期的水汽收支研究[J].气象学报, 61(2):129-145.Ding Y H, Hu G Q, 2003.A study on water vapor budget over China during the 1998 severe flood periods[J].Acta Meteor Sinica, 61(2):129-145.
黄芳芳, 马伟强, 李茂善, 等, 2016.藏北高原地表温度对气候变化响应的初步分析[J].高原气象, 35(1):55-63.Huang F F, Ma W Q, Li M S, et al, 2016.Analysis on responses of land surface temperature on the northern Tibetan Plateau to climate change[J].Plateau Meteor, 35(1):55-63.DOI:10.7522/j.issn.1000-0534.2015.00075.
梁宏, 刘晶淼, 章建成, 等, 2006.青藏高原大气总水汽量的反演研究[J].高原气象, 25(6):1055-1063.Liang H, Liu J M, Zhang J C, et al, 2006.Research on retrieval of the amount of atmospheric water vapor over Qinghai-Xizang Plateau[J].Plateau Meteor, 25(6):1055-1063.
林厚博, 游庆龙, 焦洋, 等, 2016.青藏高原及附近水汽输送对其夏季降水影响的分析[J].高原气象, 35(2):309-317.Lin H B, You Q L, Jiao Y, et al, 2016.Water vapor transportation and its influences on precipitation in summer over Qinghai-Xizang Plateau and its surroundings[J], Plateau Meteor, 35(2):309-317.DOI:10.7522/j.issn.1000-0534.2014.00146.
李育, 朱耿睿, 2015.三大自然区过渡地带近50年来气候类型变化及其对气候变化的响应[J].地球科学进展, 30(7):791-801.Li Y, Zhu G R, 2015.Changes of climate zones in the Transition area of three natural zones during the past 50 years and their responses to climate change[J].Adv Earth Sci, 30(7):791-801.
刘玉英, 李宇凡, 谢今范, 等, 2016.东北高空湿度变化特征及其与地面气温和降水的关系[J].地理科学, 36(4):628-636.Liu Y Y, Li Y F, Xie J F, et al, 2016.Climate change characteristics of free atmospheric humidity and its relationship with temperature and precipitation in northeast China[J].Sci Geographica Sinica, 36(4):628-636.
莫申国, 张百平, 程维明, 等, 2004.青藏高原的主要环境效应[J].地理科学进展, 23(2):88-96.Mo S G, Zhang B P, Cheng W M, et al, 2004.Major environmental effects of the Tibetan Plateau[J].Progress in Geography, 23(2):88-96.
施晓晖, 徐祥德, 程兴宏, 2009.2008年雪灾过程高原上游关键区水汽输送机制及其前兆性"强信号"特征[J].气象学报, 67(3):478-487.Shi X H, Xu X D, Cheng X H, 2009.Premonitory of water vapor transport in the upstream key region over the Tibetan Plateau[J].Acta Meteor Sinica, 67(3):478-487.
施雅风, 2003.中国西北气候由暖干向暖湿转型问题评估[M].北京:气象出版社, 17-25.Shi Y F, 2003.An assessment of the issues of climatic shift from warm-dry to warm-wet in northwest China[M].Beijing:China Meteorological Press, 17-25.
陶诗言, 陈联寿, 2000.第二次青藏高原大气科学试验理论研究进展[M].北京:气象出版社, 106-112.Tao S Y, Chen L S, 2000.The second research progress of atmospheric science experiment theory in the Tibetan Plateau[M].Beijing:China Meteorological Press, 106-112.
吴国雄, 毛江玉, 段安民, 等, 2004.青藏高原影响亚洲夏季气候研究的最新进展[J].气象学报, 62(5):528-540.Wu G X, Mao J Y, Duan A M, et al, 2004.Recent progress in the study on the impacts of Tibetan Plateau on Asian summer climate[J].Acta Meteor Sinica, 62(5):528-540.
王霄, 巩远发, 岑思弦, 2009.夏半年青藏高原"湿池"的水汽分布及水汽输送特征[J].地理学报, 64(5):601-608.Wang X, Gong Y F, Cen S X, 2009.Characteristics of the moist pool and its moisture transports over Qinghai-Xizang Plateau in summer half year[J], Acta Geographic Sinica, 64(5):601-608.
解承莹, 李敏姣, 张雪芹, 2014.近30a青藏高原夏季空中水资源时空变化特征及其成因[J].自然资源学报, 29(6):979-989.Xie C Y, Li M J, Zhang X Q, 2014.Characteristics of summer atmospheric water resources and its causes over the Tibetan Plateau in recent 30 years[J].J Natural Resour, 29(6):979-989.
谢启玉, 巩远发, 杨蓉, 等, 2015.基于ERA-Interim资料分析青藏高原"湿池"变化特征[J].自然资源学报, 30(7):1163-1171.Xie Q Y, Gong Y F, Yang R, et al, 2015.The characteristics of the moist pool over the Tibet Plateau based on ERA-Interim data[J].J Natural Resour, 30(7):1163-1171.
徐祥德, 赵天良, Lu Chungu, 等, 2014.青藏高原大气水分循环特征[J], 气象学报, 72(6):1079-1095.Xu X D, Zhao T L, Lu C G, et al, 2014.Characteristics of the water cycle in the atmosphere over the Tibetan Plateau[J].Acta Meteor Sinica, 72(6):1079-1095.
杨逸畴, 高登义, 李澍生, 1987.雅鲁藏布江下游河谷水汽通道初探[J].中国科学(B辑), 17(8):893-902.Yang Y C, Gao D Y, Li B S, 1987.Preliminary study of water vapor pass along the downstream of Yarlung Zangbo[J].Sci China (Ser B), 17(8):893-902.
郑度, 林振耀, 张雪芹, 2002.青藏高原与全球环境变化研究进展[J].地学前缘, 9(1):95-102.Zheng D, Lin Z Y, Zhang X Q, 2002.Progress in studies of Tibetan Plateau and global environmental change[J].Earth Science Frontiers, 9(1):95-102.
张人禾, 苏凤阁, 江志红, 等, 2015.青藏高原21世纪气候和环境变化预估研究进展[J].科学通报, 60:3036-3047.Zhang R H, Su F G, Jiang Z H, et al, 2015.An overview of projected climate and environmental changes across the Tibetan Plateau in the 21st century[J].Chinese Sci Bull, 60:3036-3047.
周顺武, 吴萍, 王传辉, 等, 2011.青藏高原夏季上空水汽含量演变特征及其与降水的关系[J].地理学报, 66(11):1466-1478.Zhou S W, Wu P, Wang C H, et al, 2011.Spatial distribution of atmospheric water vapor and its relationship with precipitation in summer over the Tibetan Plateau[J].Acta Geographica Sinica, 66(11):1466-1478.
周玉淑, 高守亭, 邓国, 2005.江淮流域2003年强梅雨期的水汽输送特征分析[J].大气科学, 29(2):195-204.Zhou Y S, Gao S T, Deng G, 2005.A diagnostic study of water vapor transport and budget during heavy precipitation over the Changjiang River and the Huaihe River basins in 2003[J].Chinese J Atmos Sci, 29(2):195-204.
[1] 樊威伟, 马伟强, 郑艳, 杨智敏. 青藏高原地面加热场年际变化特征及其与西风急流关系研究[J]. 高原气象, 2018, 37(3): 591-601.
[2] 谢欣汝, 游庆龙, 保云涛, 孟宪红. 基于多源数据的青藏高原夏季降水与水汽输送的联系[J]. 高原气象, 2018, 37(1): 78-92.
[3] 敖雪, 翟晴飞, 崔妍, 周晓宇, 易雪, 沈历都, 赵春雨, 林蓉. 三种风场再分析资料在辽宁省海岸带的比较与评估[J]. 高原气象, 2018, 37(1): 275-285.
[4] 刘维成, 张强, 傅朝. 近55年来中国西北地区降水变化特征及影响因素分析[J]. 高原气象, 2017, 36(6): 1533-1545.
[5] 张蓓, 戴新刚. 基于CMIP5的2006—2015年中国气温预估偏差分析及订正[J]. 高原气象, 2017, 36(6): 1619-1629.
[6] 计晓龙, 吴昊旻, 黄安宁, 赵卫, 吴阳. 青藏高原夏季降水日变化特征分析[J]. 高原气象, 2017, 36(5): 1188-1200.
[7] 冯蕾, 周天军. 20 km高分辨率全球模式对青藏高原夏季降水变化的预估[J]. 高原气象, 2017, 36(3): 587-595.
[8] 王丹云, 吕世华, 韩博, 李照国, 潘永洁, 孟宪红, 奥银焕, 王欣. 近30年黄土高原春季降水特征与春旱变化的关系[J]. 高原气象, 2017, 36(2): 395-406.
[9] 伍清, 蒋兴文, 谢洁. CMIP5模式对西南地区气温的模拟能力评估[J]. 高原气象, 2017, 36(2): 358-370.
[10] 吴蔚 梁卓然 刘校辰. CDF-T方法在站点尺度日降水预估中的应用[J]. 高原气象, 2017, 36(1): 0-0.
[11] 常燕, 吕世华, 罗斯琼, 吴晶, 李瑞青, 李锁锁. CMIP5耦合模式对青藏高原冻土变化的模拟和预估[J]. 高原气象, 2016, 35(5): 1157-1168.
[12] 郝立生, 丁一汇, 闵锦忠. 东亚夏季风变化与华北夏季降水异常的关系[J]. 高原气象, 2016, 35(5): 1280-1289.
[13] 张红丽, 张强, 刘骞, 颜鹏程. 中国南方和北方气候干燥程度的变化特征及差异性分析[J]. 高原气象, 2016, 35(5): 1339-1351.
[14] 王岱, 游庆龙, 江志红, 武文博, 焦洋. 基于均一化资料的中国极端地面气温变化分析[J]. 高原气象, 2016, 35(5): 1352-1363.
[15] 赵威, 韦志刚, 郑志远, 董文杰. 1964-2013年中国北方农牧交错带温度和降水时空演变特征[J]. 高原气象, 2016, 35(4): 979-988.