Please wait a minute...
高级检索
高原气象  2018, Vol. 37 Issue (4): 1025-1032    DOI: 10.7522/j.issn.1000-0534.2017.00092
论文     
青海湖高寒湿地生态系统生长季大气水汽氢氧稳定同位素特征
吴方涛1,2, 曹生奎1,2, 曹广超1,2, 陈克龙1,2, 林阳阳1
1. 青海师范大学地理科学学院, 青海 西宁 810008;
2. 青海师范大学/青海省自然地理与环境过程重点实验室, 青海 西宁 810008
Hydrogen and Oxygen Stable Isotopes Characteristics of Atmospheric Water Vapor during Growing Season in Alpine Wetland Ecosystem of Qinghai Lake
WU Fangtao1,2, CAO Shengkui1,2, CAO Guangchao1,2, CHEN Kelong1,2, LIN Yangyang1
1. School of Geographical Science, Qinghai Normal University, Xining 810008, Qinghai, China;
2. Qinghai Province Key Laboratory of Physical Geography and Environmental Process, Qinghai Normal University, Xining 810008, Qinghai, China
 全文: PDF 
摘要: 基于对植物生长季大气水汽氢氧稳定同位素组成(δ18O、δD)的原位连续观测数据,研究了青海湖高寒湿地生态系统大气水汽氢氧稳定同位素特征以及大气水汽δ18O与主要环境因子的相关关系。结果显示:大气水汽中δ18O和δD在0.5 m和1.5 m以及0.9 m和1.9 m之间差异性都很小,且季节变化趋势都表现为生长季中期低,前期和后期高。降水量、温度、相对湿度、蒸散和净辐射都是影响大气水汽δ18O变化的重要环境因子,且各环境因子之间存在相互联系协同作用的关系。受研究区环境因子、大气水汽来源以及青海湖蒸发水汽的影响,表征当地大气水汽δ18O和δD相关关系的大气水汽线方程MVL偏离全球大气降水线方程GMWL。
关键词: 青海湖氢氧稳定同位素大气水汽原位观测    
Abstract: Water cycle is a "belt" that connects all circles of the earth and various water bodies, and is of great significance to the evolution of the Earth's surface structure and human sustainable development. Hydrogen and oxygen stable isotopes as an important part of the water body, are sensitive to environmental changes and record the historical evolution of the water cycle. Hydrogen and oxygen stable isotopes of atmospheric water vapor can provide rich information for studying atmospheric water movement and its phase transition process. Based on the in-situ continuous observation data of the stable isotopic composition (δ18O, δD) of atmospheric water vapor in the growing season of the plant, the characteristics about hydrogen and oxygen stable isotopic and the correlation between atmospheric water vapor δ18O and the main environmental factors were analyzed. The results showed that the differences of δ18O as well as δD in the heights of 0.5 m and 1.5 m, 0.9 m and 1.9 m are small, and the seasonal variation trends of them are low in the middle stage of the growing season, while the early growth season and the latter is just the opposite. Precipitation, temperature, relative humidity, evapotranspiration and net radiation are the important environmental factors that affecting the change of δ18O in atmospheric water vapor, and there are interrelated and synergistic interactions among environmental factors relationship. The local meteoric vapor line equation MVL, which characterizes the correlation between local atmospheric water vapor δ18O and δD, deviates from the global meteoric water line (GMWL) by the influences of environmental factors, atmospheric water vapor sources and evaporation of water vapor in Qinghai Lake.
Key words: Qinghai Lake    hydrogen and oxygen stable isotopes    atmospheric water vapor    in-situ measurement
收稿日期: 2017-10-01 出版日期: 2018-08-22
:  P426  
基金资助: 国家自然科学基金项目(31260130);中国科学院“西部之光”计划项目(科发人教字[2012]179号);中国博士后基金项目(2013M542400);青海省重点实验室平台建设项目(2014-Z-Y24,2015-Z-Y01)
通讯作者: 曹生奎(1979-),男,青海西宁人,教授,主要从事全球变化生态学及生态水文与水资源学研究.E-mail:caoshengkui@163.com     E-mail: caoshengkui@163.com
作者简介: 吴方涛(1991-),男,河南商丘人,硕士研究生,主要从事全球变化生态学及陆地生态系统碳循环方面的研究E-mail:wuft1991@163.com
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
吴方涛
曹生奎
曹广超
陈克龙
林阳阳

引用本文:

吴方涛, 曹生奎, 曹广超, 陈克龙, 林阳阳. 青海湖高寒湿地生态系统生长季大气水汽氢氧稳定同位素特征[J]. 高原气象, 2018, 37(4): 1025-1032.

WU Fangtao, CAO Shengkui, CAO Guangchao, CHEN Kelong, LIN Yangyang. Hydrogen and Oxygen Stable Isotopes Characteristics of Atmospheric Water Vapor during Growing Season in Alpine Wetland Ecosystem of Qinghai Lake. Plateau Meteorology, 2018, 37(4): 1025-1032.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2017.00092        http://www.gyqx.ac.cn/CN/Y2018/V37/I4/1025

An Z S, Colman S M, Zhou W J, et al, 2012. Interplay between the westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32ka[J/OL]. Scientific Reports, 2:619. DOI:10.1038/srep00619.[2017-8-27]. https://www.nature.com/articles/srep00619.pdf.
Chen F L, Zhang M J, Wang S J, et al, 2015. Relationship between sub-cloud secondary evaporation and stable isotopes in precipitation of Lanzhou and surrounding area[J]. Quaternary International, 380:68-74.
Cui B L, Li X Y, Wei X H, 2016. Isotope and hydrochemistry reveal evolutionary processes of lake water in Qinghai Lake[J]. J Great Lakes Res, 42(3):580-587.
Farquhar G D, Cernusak L A, Barnes B, 2007. Heavy water fractionation during transpiration[J]. Plant Physiology, 143(1):11-18.
Gat J R, Matsui E, 1991. Atmospheric water balance in the Amazon Basin:An isotopic evapotranspiration model[J]. J Geophys Res, 96(D7):13179-13188.
Gat J R, 1996. Oxygen and hydrogen isotopes in the hydrologic cycle[J]. Annual Review of Earth and Planetary Sciences, 24(1):225-262.
He S Y, Richards K, 2016. Stable isotopes in monsoon precipitation and water vapour in Nagqu, Tibet, and their implications for monsoon moisture[J]. J Hydrol, 540:615-622.
Jacob H, Sonntag C, 1991. An 8-year record of the seasonal variation of 2H and 18O in atmospheric water vapour and precipitation at Heidelberg, Germany[J]. Tellus B:Chemical and Physical Meteorology, 43(3):291-300.
Lai C T, Ehleringer J R, Bond B J, et al, 2010. Contributions of evaporation, isotopic non-steady state transpiration and atmospheric mixing on the delta18O of water vapour in Pacific Northwest coniferous forests[J]. Plant Cell & Environment, 29(1):77-94.
Lee X H, Kim K, Smith R, 2007. Temporal variations of the 18O/16O signal of the whole-canopy transpiration in a temperate forest[J]. Global Biogeochemical Cycles, 21(3):130-144.
Lee X H, Smith R, Williams J, 2006. Water vapour 18O/16O isotope ratio in surface air in New England, USA[J]. Tellus B:Chemical and Physical Meteorology, 58(4):293-304.
Liu J F, Xiao C D, Ding M H, et al, 2014. Variations in stable hydrogen and oxygen isotopes in atmospheric water vapor in the marine boundary layer across a wide latitude range[J]. J Environ Sci, 26(11):2266-2276.
Liu J R, Song X F, Yuan G F, et al, 2010. Characteristics of δ18O in precipitation over Eastern Monsoon China and the water vapor sources[J]. Chinese Sci Bull, 55(2):200-211.
Salamalikis V, Argiriou A A, Dotsika E, 2015. Stable isotopic composition of atmospheric water vapor in Patras, Greece:A concentration weighted trajectory approach[J]. Atmos Res, 152:93-104.
Welp L R, Lee X H, Kim K, et al, 2008. δ18O of water vapour, evapotranspiration and the sites of leaf water evaporation in a soybean canopy[J]. Plant Cell & Environment, 31(9):1214-1228.
Wu H W, Li X Y, He B, et al, 2017. Characterizing the Qinghai Lake watershed using oxygen-18 and deuterium stable isotopes[J]. J Great Lakes Res, 43(3):33-42.
Zhang S C, Sun X M, Wang J L, et al, 2011. Short-term variations of vapor isotope ratios reveal the influence of atmospheric processes[J]. J Geograp Sci, 21(3):401-416.
曹生奎, 陈克龙, 曹广超, 等, 2014. 青海湖流域矮嵩草草甸土壤有机碳密度分布特征[J]. 生态学报, 34(2):482-490. Cao S K, Chen K L, Cao G C, et al, 2014. Characteristics of soil carbon density distribution of the Kobresia humilis meadow in the Qinghai Lake basin[J]. Acta Ecological Sinisa, 34(2):482-490.
丛日杰, 吴星兵, 李枫, 等, 2015. 稳定同位素分析在鸟类生态学中的应用[J]. 生态学报, 35(15):4945-4957. Cong R J, Wu X B, Li F, et al, 2015. Application of stable isotope analysis in avian ecology[J]. Acta Ecologica Sinica, 35(15):4945-4957.
郭波莉, 魏益民, 潘家荣, 2007. 同位素指纹分析技术在食品产地溯源中的应用进展[J]. 农业工程学报, 23(3):284-289. Guo B L, Wei Y M, Pan J R, 2007. Progress in the application of isotopic fingerprint analysis to food origin traceability[J]. Transactions of the Chinese Society of Agricultural Engineering, 23(3):284-289.
李小飞, 张明军, 王圣杰, 等, 2013. 黄河流域大气降水氢、氧稳定同位素时空特征及其环境意义[J]. 地质学报, 87(2):269-277. Li X F, Zhang M J, Wang S J, et al, 2013. Spatial and temporal variations of hydrogen and oxygen isotopes in precipitation in the Yellow River basin and its environmental significant[J]. Acta Geologica Sinica, 87(2):269-277.
牛晓栋, 江洪, 王帆, 2015. 天目山森林生态系统大气水汽稳定同位素组成的影响因素[J]. 浙江农林大学学报, 32(3):327-334. Niu X D, Jiang H, Wang F, 2015. Stable isotope composition for atmospheric water vapor in the forest ecosystem of Mount Tianmu[J]. Journal of Zhejiang A & F University, 32(3):327-334.
石俊杰, 龚道枝, 梅旭荣, 等, 2012a. 稳定同位素法和涡度-微型蒸渗仪区分玉米田蒸散组分的比较[J]. 农业工程学报, 28(20):114-120. Shi J J, Gong D Z, Mei X R, et al, 2012a. Comparison of partitioning evapotranspiration composition in maize field using stable isotope and eddy covariance-microlysimeter methods[J]. Transactions of the Chinese Society of Agricultural Engineering, 28(20):114-120.
石俊杰, 马孝义, 胡笑涛, 等, 2012b. 大气水汽稳定同位素组成δv影响因素分析[J]. 灌溉排水学报, 31(5):56-59. Shi J J, Ma X Y, Hu X T, et al, 2012b. Atmospheric water vapor stable isotope composition δv influence factors analysis[J]. Journal of Irrigation and Drainage, 31(5):56-59.
王小婷, 温学发, 2016. 黑河中游春玉米叶片水δD和δ18O的富集过程和影响因素[J]. 植物生态学报, 40(9):912-924. Wang X T, Wen X F, 2016. Leaf water δD and δ18O enrichment process and influencing factors in spring maize (Zea mays) grown in the middle reaches of Heihe River Basin[J]. Chinese J Plant Ecology, 40(9):912-924.
王永森, 董四方, 陈益钟, 2013. 基于温度与湿度的大气降水同位素特征影响因素分析[J]. 中国农村水利水电(6):12-15. Wang Y S, Dong S F, Chen Y Z, 2013. Research on the precipitation isotope effect factor based on temperature and humidity[J]. China Rural Water and Hydropower(6):12-15.
杨斌, 谢甫绨, 温学发, 等, 2012. 华北平原农田土壤蒸发δ18O的日变化特征及其影响因素[J]. 植物生态学报, 36(6):539-549. Yang B, Xie F T, Wen X F, et al, 2012. Diurnal variations of soil evaporation δ18O and factors affecting it in cropland in North China[J]. Chinese Journal of Plant Ecology, 36(6):539-549.
杨斌, 2016. 氢氧稳定同位素在植物水分溯源及蒸散组分区分研究中的应用[D]. 北京:中国科学院大学. Yang B, 2016. Application of hydrogen and oxygen stable isotopes in plant water source tracing and evapotranspiration partitioning researches[D]. Beijing:University of Chinese Academy of Sciences.
姚天次, 章新平, 谢宇龙, 等, 2017. 长沙地区近地面水汽中氢氧稳定同位素的变化特征[J]. 环境科学学报, 37(2):545-553. Yao T C, Zhang X P, Xie Y L, et al, 2017. Variations of hydrogen and oxygen isotopes in atmospheric water vapor of near surface in Changsha[J]. Acta Scientiae Circumstantiae, 37(2):545-553.
尹常亮, 姚檀栋, 田立德, 等, 2008. 德令哈大气水汽中δ18O的时间变化特征[J]. 中国科学(地球科学), 38(6):723-731. Yin C L, Yao T D, Tian L D, et al, 2008. The temporal variations charactistics of δ18O in atmospheric vapor, De Lingha Region[J]. Scie China (Earth Sci), 38(6):723-731.
余武生, 姚檀栋, 田立德, 等, 2006. 那曲河流域季风结束前后大气水汽中δ18O变化特征[J]. 科学通报, 51(2):194-199. Yu W S, Yao T D, Tian L D, et al, 2006. δ18O variation characteristic of atmosphere vapor isotope during the monsoon period of Naqu River[J]. Chinese Sci Bull, 51(2):194-199.
袁国富, 张娜, 孙晓敏, 等, 2010. 利用原位连续测定水汽δ18O值和Keeling Plot方法区分麦田蒸散组分[J]. 植物生态学报, 34(2):170-178. Yuan G F, Zhang N, Sun X M, et al, 2010. Partitioning wheat field evapotranspiration using Keeling Plot method and continuous atmospheric vapor δ18O data[J]. Chinese J Plant Ecology, 34(2):170-178.
张世春, 2010. 大气水汽δ18O和δD原位连续观测及其应用研究[D]. 北京:中国科学院研究生院. Zhang S C, 2010. Continuous measurement of atmospheric water vapor δ18O and δD for hydrological and ecological applications[D]. Beijing:Graduate University of Chinese Academy of Sciences.
周长艳, 邓梦雨, 齐冬梅, 2017. 青藏高原湿池的气候特征及其变化[J]. 高原气象, 36(2):294-306. Zhou C Y, Deng M Y, Qi D M, 2017. Characteristics of the moist pool over the Qinghai-Tibetan Plateau and its variation[J]. Plateau Meteor, 36(2):294-306. DOI:10.7522/j. issn. 1000-0534.2016.00042.
[1] 钱正安, 蔡英, 宋敏红, 吴统文, 周建琴, 栾晨. 中国西北旱区暴雨水汽输送研究进展[J]. 高原气象, 2018, 37(3): 577-590.
[2] 谢琰, 文军, 刘蓉, 王欣, 贾东于. 太阳辐射和水汽压差对黄河源区高寒湿地潜热通量的影响研究[J]. 高原气象, 2018, 37(3): 614-625.
[3] 位晶, 段克勤. 基于卫星资料的秦岭南北云系及其垂直结构特征[J]. 高原气象, 2018, 37(3): 777-785.
[4] 王慧清, 付亚男, 包福祥, 孟雪峰. 内蒙古地区多年大气可降水量及其转化效率研究[J]. 高原气象, 2018, 37(3): 786-795.
[5] 除多, 边巴次仁, 扎珠, 德吉央宗. SR-50A超声雪深仪在西藏高原的适用性研究[J]. 高原气象, 2018, 37(2): 382-393.
[6] 薛小宁, 邓小波, 刘贵华. 基于卫星资料的青藏高原卷云特性研究[J]. 高原气象, 2018, 37(2): 505-513.
[7] 许东蓓, 苟尚, 肖玮, 孟丽霞, 沙宏娥, 狄潇泓, 石延召. 两种类型短时强降水形成机理对比分析——以甘肃两次短时强降水过程为例[J]. 高原气象, 2018, 37(2): 524-534.
[8] 李培都, 司建华, 冯起, 赵春彦, 王春林. 1958—2015年敦煌及周边地区极端降水事件的时空变化特征[J]. 高原气象, 2018, 37(2): 535-544.
[9] 姚俊强, 杨青, 毛炜峄, 韩雪云. 基于HYSPLIT4的一次新疆天山夏季特大暴雨水汽路径分析[J]. 高原气象, 2018, 37(1): 68-77.
[10] 崔园园, 覃军, 敬文琪, 谭桂容. GLDAS和CLDAS融合土壤水分产品在青藏高原地区的适用性评估[J]. 高原气象, 2018, 37(1): 123-136.
[11] 贺芳芳, 杨涵洧, 穆海振, 徐卫忠, 徐家良. 上海地区短历时强降水致灾阈值探索[J]. 高原气象, 2017, 36(6): 1567-1575.
[12] 韩熠哲, 马伟强, 王炳赟, 马耀明, 田荣湘. 青藏高原近30年降水变化特征分析[J]. 高原气象, 2017, 36(6): 1477-1486.
[13] 钱正安, 宋敏红, 吴统文, 蔡英. 世界干旱气候研究动态及进展综述(Ⅰ):若干主要干旱区国家的研究动态及联合国的贡献[J]. 高原气象, 2017, 36(6): 1433-1456.
[14] 钱正安, 宋敏红, 吴统文, 蔡英. 世界干旱气候研究动态及进展综述(Ⅱ):主要研究进展[J]. 高原气象, 2017, 36(6): 1457-1476.
[15] 王磊, 陈仁升, 宋耀选. 高寒山区面降水量获取方法及影响因素研究进展[J]. 高原气象, 2017, 36(6): 1546-1556.