Please wait a minute...
高级检索
高原气象  2018, Vol. 37 Issue (4): 958-969    DOI: 10.7522/j.issn.1000-0534.2017.00093
论文     
云南南支槽飑线雹暴中尺度特征及环境条件
张腾飞1, 张杰2, 张思豆3, 朱莉4
1. 云南省人工影响天气中心, 云南 昆明 650034;
2. 云南省气象信息中心, 云南 昆明 650034;
3. 云南大学大气科学系, 云南 昆明 650500;
4. 云南省气象台, 云南 昆明 650034
Mesoscale Characteristics and Environmental Conditions of South Trough Squall-Line Hailstorm in Yunnan
ZHANG Tengfei1, ZHANG Jie2, ZHANG Sidou3, ZHU Li4
1. Yunnan Weather Modification Center, Kunming 650034, Yunnan, China;
2. Yunnan Meteorological Information Center, Kunming 650034, Yunnan, China;
3. Department of Atmospheric Science, Yunnan University, Kunming 650500, Yunnan, China;
4. Yunnan Meteorological Observatory, Kunming 650034, Yunnan, China
 全文: PDF 
摘要: 利用自动站、FY-2E卫星、地闪及1°×1° NCEP再分析气象资料对春季两次南支槽影响下云南飑线雹暴中尺度特征及环境条件进行分析。结果表明:南支槽前的高低空偏西急流不仅为强对流雹暴提供水汽条件,而且相互耦合加强上升运动为强对流雹暴提供动量条件,雹暴发生在500 hPa和700 hPa南支槽前的偏西急流耦合区内;高空深厚强急流带和强垂直风切变导致中高层强斜压性加大而加强上升运动促使雹暴发展,且中低层强垂直风切变影响雹暴的组织和发展,雹暴发生在中低层垂直风切变大于等于3×10-3 s-1的区域;青藏高原500 hPa低槽东南移引导北方冷空气南下,形成中层冷空气入侵和低层暖脊控制的上冷下暖大气强烈不稳定,为强对流雹暴发生发展提供重要的对流不稳定条件,雹暴发生在850 hPa与500 hPa温差T(850-500) ≥ 27 K的强烈不稳定区域内;上冷下暖的强烈不稳定和强烈垂直风切变导致南支槽对流积状云形成,后侧中层冷平流侵入和高空急流动量下传作用进一步发展形成逗点状对流云系和弓形飑线,而偏西急流强弱和强垂直风切变大小是导致两次飑线雹暴发展差异的直接原因。
关键词: 南支槽飑线雹暴中尺度特征环境条件    
Abstract: By using the automatic station, FY2E satellite, CG lightning and NCEP 1°×1° reanalysis meteorological data, mesoscale characteristics and environmental conditions of two spring squall-line hailstorms in Yunnan were analyzed under the influence of the south trough. The results show that the partial westerly jet before south trough not only provides water vapor condition for strong convective hailstorms, but also provide momentum condition for hailstorms through their mutual coupling action strengthens ascending motion. Hailstorms occur in the mutual coupling area of the partial westerly jet before the south troughs at 500 hPa and 700 hPa. The deep and strong jet stream in high altitude and the strong vertical wind shear can produce high wind on the ground through momentum transfer, on the other hand, in the production of convective instability, they can lead to the increase of baroclinicity in the middle and high layer, and strengthen the upward movement to promote the development of hailstorm, especially the strong vertical wind in the middle and low layer influences the organization and development of hailstorm. Hailstorms occur in areas where the vertical wind shear is greater than or equal to 3×10-3 s-1 between middle and low layer. When the 500 hPa low trough over the Qinghai-Tibetan Plateau moves to the southeast and leads the cold air southward in the north, the strong convective instability of upper cold and lower warm air is formed to provide convective instable conditions for the occurrence and development of hailstorm, because of the cold air intrusion on the middle layer and warm ridge domination under the common action of warm advection and surface radiation heating on the low layer. Hailstorms occur in the strong instable region of T(850-500) ≥ 27 K. The south trough clouds continuously develop to squall-line hailstorms which influence Yunnan from the west to the east for about 12 hours. The strong convective instability of upper cold and lower warm air and the strong vertical wind shear lead to the formation of convective cumuliform clouds of the south trough, and the cold advection invasion of rear side in the middle level and the momentum down delivery function lead to further develop to comma clouds and arched squall lines, which produce TBB decrease and CG lightning increase, produce the sudden change of wind direction, the sudden increase of relative humidity, the sudden drop of temperature, and produce the strong convective hailstorm weather of intense thunderstorm, gale, hail and short-term heavy rain. While the strength of westerly jet and the size of strong vertical wind shear are the direct causes of two squall line hailstorm development difference.
Key words: South trough    squall-line    hailstorm    mesoscale characteristics    environmental conditions
收稿日期: 2017-07-07 出版日期: 2018-08-22
:  P458.2  
基金资助: 云南省科技惠民专项(2016RA096,2014RA002,2015FB166);云南省气象局科研项目(RY201701)
通讯作者: 张杰(1967-),男,山西太原人,高级工程师,主要从事气象信息技术和资料应用研究.E-mail:mrzjztf@126.com     E-mail: mrzjztf@126.com
作者简介: 张腾飞(1966-),女,云南大理人,正高级工程师,主要从事灾害性天气预警预报方法研究.E-mail:tfzhang@21cn.com
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张腾飞
张杰
张思豆
朱莉

引用本文:

张腾飞, 张杰, 张思豆, 朱莉. 云南南支槽飑线雹暴中尺度特征及环境条件[J]. 高原气象, 2018, 37(4): 958-969.

ZHANG Tengfei, ZHANG Jie, ZHANG Sidou, ZHU Li. Mesoscale Characteristics and Environmental Conditions of South Trough Squall-Line Hailstorm in Yunnan. Plateau Meteorology, 2018, 37(4): 958-969.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2017.00093        http://www.gyqx.ac.cn/CN/Y2018/V37/I4/958

Bluestein H B, Jain M H, 1985. Formation of mesoscale lines of precipitation:Severe squall lines in Oklahoma during the spring[J]. J Atmos Sci, 42(16):1711-1732.
Bluestein H B, Marx G T, Jain M H, 1987. Formation of mesoscale lines of precipitation:Non-Severe squall lines in Oklahoma during the spring[J]. Mon Wea Rev, 115(11):2719-2727.
Fujita T T, 1955. Results of detailed synoptic studies of squall lines[J]. Tellus, 7(4):405-436.
Fujita T T, 1978. Manual of downburst identification for project NIMROD[C]//SMRP Research Paper 156, University of Chicago, 104.
Takemi T, 2006. Impacts of moisture profile on the evolution and organization of midlatitude squall lines under various shear conditions[J]. Atmos Res, 82(1/2):37-54.
Weisman M L, Rotunno R, 2004. "A theory for strong long-lived squall lines" revisited[J]. J Atmos Sci, 61(4):361-382.
陈明轩, 王迎春, 2012. 低层垂直风切变和冷池相互作用影响华北地区一次飑线过程发展维持的数值模拟[J]. 气象学报, 70(3):371-386. Chen M X, Wang Y C, 2012. Numerical simulation study of interactional effects of the low-level vertical wind shear with the cold pool on a squall line evolution in North China[J]. Acta Meteor Sinica, 70(3):371-386.
陈涛, 代刊, 张芳华, 2013. 一次华北飑线天气过程中环境条件与对流发展机制研究[J]. 气象, 39(8):945-954. Chen T, Dai K, Zhang F H, 2013. Study on ambient condition and initialization mechanism of convection in a severe squall line storm event in North China[J]. Meteor Mon, 39(8):945-954.
丁一汇, 1991. 高等天气学[M]. 北京:气象出版社. Ding Y H, 1991. Advanced synoptic meteorology[M]. Beijing:China Meteorological Press.
金龙, 赵坤, 谢利平, 等, 2013. 一次弓形回波结构和演变机制的观测分析[J]. 气象科学, 33(6):591-601. Jin L, Zhao K, Xie L P, et al, 2013. Radar observation analysis on structure and evolution mechanism of a bow echo[J]. J Meteor Sci, 33(6):591-601.
李鸿洲, 蔡则怡, 徐元泰, 1999. 华北强飑线生成环境与地形作用的数值试验研究[J]. 大气科学, 23(6):713-721. Li H Z, Cai Z Y, Xu Y T, 1999. A numerical experiment of topographic effect on genesis of the squall line in North China[J]. Chinese J Atmos Sci, 23(6):713-721.
李哲, 李国翠, 刘黎平, 等, 2017. 飑线优化识别及雷暴大风分析[J]. 高原气象, 36(3):801-810. Li Z, Li G C, Liu L P, et al, 2017. The optimal identification method of squall line and thunderstorm winds analysis[J]. Plateau Meteor, 36(3):801-810. DOI:10.7522/j. issn. 1000-0534.2016.00040.
梁建宇, 孙建华, 2012.2009年6月一次飑线过程灾害性大风的形成机制[J]. 大气科学, 36(2):316-336. Liang J Y, Sun J H, 2012. The formation mechanism of damaging surface wind during the squall line in June 2009[J]. Chinese J Atmos Sci, 36 (2):316-336.
廖晓农, 俞小鼎, 王迎春, 2008. 北京地区一次罕见的雷暴大风过程特征分析[J]. 高原气象, 27(6):1350-1362. Liao X N, Yu X D, Wang Y C, 2008. Analysis on an exceptionally strong wind gust event in Beijing[J]. Plateau Meteor, 27(6):1350-1362.
刘勇, 2005. 急流次级环流对局地持续强风暴天气的作用[J]. 气象科技, 33(3):214-217. Liu Y, 2005. Effect of jet sub-circulation on a local lasting heavy rainstorm[J]. Meteor Sci Technol, 33(3):214-217.
路亚奇, 曹彦超, 张峰, 等, 2016. 陇东冰雹天气特征分析及预报预警[J]. 高原气象, 35(6):1565-1576. Lu Y Q, Cao Y C, Zhang F, et al, 2016. The prediction and forewarning system as well as weather characteristics analyses of hail in the East of Gansu[J]. Plateau Meteor, 35(6):1565-1576. DOI:10.7522/j. issn. 1000-0534.2015.00116.
马中元, 苏俐敏, 谌芸, 等, 2014. 一次强飑线及飑前中小尺度系统特征分析[J]. 气象, 40(8):916-929. Ma Z Y, Su L M, Chen Y, et al, 2014. Characteristics of mesoscale and microscale systems during a severe squall line process[J]. Meteor Mon, 40(8):916-929.
孙建华, 郑淋淋, 赵思雄, 2014. 水汽含量对飑线组织结构和强度影响的数值试验[J]. 大气科学, 38(4):742-755. Sun J H, Zheng L L, Zhao S X, 2014. Impact of moisture on the organizational mode and intensity of squall lines determined through numerical experiments[J]. Chinese J Atmos Sci, 38(4):742-755.
王秀明, 俞小鼎, 周小刚, 等, 2012. "6·3"区域致灾雷暴大风形成及维持原因分析[J]. 高原气象, 31(2):504-514. Wang X M, Yu X D, Zhou X G, et al, 2012. Study on the formation and evolution of ‘6.3’ damage wind[J]. Plateau Meteor, 31(2):504-514.
吴海英, 陈海山, 蒋义芳, 等, 2013. "090603"强飑线过程动力结构特征的观测与模拟分析[J]. 高原气象, 32(4):1084-1094. Wu H Y, Chen H S, Jiang Y F, et al, 2013. Observation and simulation analyses on dynamical structure features in a severe squall line process on 3 June 2009[J]. Plateau Meteor, 32(4):1084-1094. DOI:10.7522/j. issn. 1000-0534.2012.00102.
伍志芳, 庞古乾, 贺汉青, 等, 2014.2012年4月广东左移和飑线内超级单体的环境条件和结构对比分析[J]. 气象, 40(6):655-667. Wu Z F, Pang G Q, He H Q, et al, 2014. Comparative analysis of environmental conditions and structural features for the left moving supercell and the supercell in squall line in April 2012 Guangdong[J]. Meteor Mon, 40(6):655-667.
徐小红, 余兴, 朱延年, 等, 2012. 一次强飑线云结构特征的卫星反演分析[J]. 高原气象, 31(1):258-268. Xu X H, Yu X, Zhu Y N, et al, 2012. Analysis on satellite retrieval of cloud structure in a severe squall Line process[J]. Plateau Meteor, 31(1):258-268.
俞小鼎, 姚秀萍, 熊廷南, 等, 2006. 多普勒天气雷达原理与业务应用[M]. 北京:气象出版社. Yu X D, Yao X P, X T N, et al, 2006. The principle and application of Doppler weather radar[M]. Beijing:China Meteorological Press.
张建军, 王咏青, 钟玮, 2016. 飑线组织化过程对环境垂直风切变和水汽的响应[J]. 大气科学, 40(4):689-702. Zhang J J, Wang Y Q, Zhong W, 2016. Impact of vertical wind shear and moisture on the organization of squall lines[J]. Chinese J Atmos Sci, 40(4):689-702.
张沛源, 1983. 飑线雹暴不同发展阶段的垂直流场特征[J]. 高原气象, 2(3):40-48. Zhang P Y, 1983. Vertical airflow characteristics of squall-line hailstorm at different developmental stages[J]. Plateau Meteor, 2(3):40-48.
张腾飞, 段旭, 鲁亚斌, 等, 2006. 云南一次强对流冰雹过程的环流及雷达回波特征分析[J]. 高原气象, 25(3):531-538. Zhang T F, Duan X, Lu Y B, et al, 2006. Circulation background for a severe convective hailstorm weather process in Yunnan and its Doppler radar echo features[J]. Plateau Meteor, 25(3):531-538.
张腾飞, 张杰, 尹丽云, 2013. 云南一次秋季雷暴过程的闪电特征及形成条件分析[J]. 高原气象, 32(1):268-277. Zhang T F, Zhang J, Yin L Y, 2013. Analyses on lightning feature and formation condition for a thunderstorm process in Yunnan[J]. Plateau Meteor, 32(1):268-277. DOI:10.7522/j. issn. 1000-0534.2012.00026.
张新科, 陈晋北, 余晔, 等, 2017. 雷暴系统影响下的黄土高原塬区微气象特征研究[J]. 高原气象, 36(2):384-394. Zhang X K, Chen J B, Yu Y, et al, 2017. Study on the micrometeorological characteristics over the Loess Plateau under the influence of thunderstorm[J]. Plateau Meteor, 36(2):384-394. DOI:10.7522/j. issn. 1000-0534.2017.00002.
郑媛媛, 张雪晨, 朱红芳, 等, 2014. 东北冷涡对江淮飑线生成的影响研究[J]. 高原气象, 33(1):261-269. Zheng Y Y, Zhang X C, Zhu H F, et al, 2014. Study of squall line genesis with northeast cold vortex[J]. Plateau Meteor, 33(1):261-269. DOI:10.7522//j. issn. 1000-0534.2013.00005.
庄薇, 刘黎平, 薄兆海, 等, 2010. 新疆一次强飑线过程双多普勒雷达观测的中尺度风场结构分析[J]. 气象学报, 68(2):224-234. Zhuang W, Liu L P, Bo Z H, et al, 2010. Study of the mesoscale wind field structure of a strong squall line in the Xinjiang Uygur Autonomous Region based on the dual-Doppler radar observations[J]. Acta Meteor Sinica, 68(2):224-234. DOI:10.11676/qxxb2010.023.
[1] 王楠, 赵强, 井宇, 张小雯. 秦岭北麓一次冷锋触发的短时强降水成因分析[J]. 高原气象, 2018, 37(5): 1277-1288.
[2] 杨颖璨, 李跃清, 陈永仁. 高原低涡东移加深过程的结构分析[J]. 高原气象, 2018, 37(3): 702-720.
[3] 赵庆云, 张武, 陈晓燕, 苟尚. 一次六盘山两侧强对流暴雨中尺度对流系统的传播特征[J]. 高原气象, 2018, 37(3): 767-776.
[4] 翟丽萍, 农孟松, 赖珍权, 祁丽燕, 刘日胜. 广西“4·20”暖区飑线的形成及结构[J]. 高原气象, 2018, 37(2): 568-576.
[5] 王莹, 苗峻峰, 苏涛. 海南岛地形对局地海风降水强度和分布影响的数值模拟[J]. 高原气象, 2018, 37(1): 207-222.
[6] 武麦凤, 吉庆, 武维刚. 一次槽前“干”对流背景下阵风锋天气过程分析[J]. 高原气象, 2017, 36(3): 845-851.
[7] 赵庆云, 傅朝, 刘新伟, 陈晓燕, 周晓军. 西北东部暖区大暴雨中尺度系统演变特征[J]. 高原气象, 2017, 36(3): 697-704.
[8] 常煜, 李秀娟, 陈超, 马素艳, 仲夏, 赵斐, 马学峰. 内蒙古一次暴雨过程中尺度特征及成因分析[J]. 高原气象, 2016, 35(2): 432-443.
[9] 万明波, 孟宪贵, 刁秀广. 山东极端强降雨风暴传播类型及流场结构特征[J]. 高原气象, 2015, 34(6): 1741-1750.
[10] 黄勇, 吴林林, 冯妍, 翟菁, 刘慧娟, 袁野. 两次对流云合并过程的双偏振雷达观测研究[J]. 高原气象, 2015, 34(5): 1474-1485.
[11] 刁秀广, 孟宪贵, 万明波, 张骞, 李静. 源于飑线前期和强降雨带后期的弓形回波雷达产品特征及预警[J]. 高原气象, 2015, 34(5): 1486-1494.
[12] 王天义, 朱克云, 张杰, 周筠珺. 拉萨一次热力雷暴的结构特征及数值模拟[J]. 高原气象, 2015, 34(5): 1237-1248.
[13] 潘留杰, 张宏芳, 侯建忠, 袁小林. 弱天气系统强迫下黄土高原强对流云的初生及演变[J]. 高原气象, 2015, 34(4): 982-990.
[14] 孙燕, 韩桂荣, 李超. 夏季东北冷涡异常对淮河流域降水影响机制的数值模拟[J]. 高原气象, 2015, 34(4): 1149-1157.
[15] 徐芬, 杨吉, 夏文梅, 周红根. 雷达强度数据中的阵风锋特征统计和自动识别[J]. , 2015, 34(2): 586-595.
img

QQ群聊

img

官方微信