Please wait a minute...
高级检索
高原气象  2018, Vol. 37 Issue (2): 432-442    DOI: 10.7522/j.issn.1000-0534.2017.00094
论文     
大气红外探测器(AIRS)温、湿廓线反演产品及边界层高度在黄土高原的验证
程海艳1,2, 余晔1,3, 陈晋北1,3, 姚惇4, 解晋1,2, 李江林1,3
1. 中国科学院西北生态环境资源研究院/寒旱区陆面过程与气候变化重点实验室, 甘肃 兰州 730000;
2. 中国科学院大学, 北京 100049;
3. 中国科学院平凉陆面过程与灾害天气观测研究站, 甘肃 平凉 744015;
4. 平凉市气象局, 甘肃 平凉 744000
Validation of AIRS Retrieved Temperature and Moisture Products and Its Applicability for Boundary Layer Height Estimation in Loess Plateau
CHENG Haiyan1,2, YU Ye1,3, CHEN Jinbei1,3, YAO Dun4, XIE Jin1,2, LI Jianglin1,3
1. Key Laboratory of Land Surface Process & Climate Change in Cold & Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. Pingliang Land Surface Process & Severe Weather Research Station, Chinese Academy of Sciences, Pingliang 744015, Gansu, China;
4. PingliangMeteorological Bureau, Pingliang 744000, Gansu, China
 全文: PDF(1000 KB)  
摘要: 利用黄土高原地区加强观测期探空资料和大气红外探测器(Atmospheric Infrared Sounder,AIRS)反演的温度、相对湿度廓线资料,评估了AIRS反演产品在黄土高原的适用性,以及利用AIRS温度廓线计算边界层高度的可行性。结果表明,各种边界层高度计算方法相关性显著,平均高度差异一般不超过200 m;Richardson数临界值的选取对确定边界层高度的影响不大。AIRS反演的大气温度和相对湿度均能很好地反映环境温湿的变化;温度平均偏差在±1 K以内,均方根误差一般不超过2 K;AIRS反演的地面气温误差相对较大,平均偏差和均方根误差分别为-1.68 K和3.32 K,并且会影响边界层高度的确定;AIRS相对湿度平均偏差在±10%以内,均方根误差不超过20%。利用Parcel法估计的边界层高度结果显示,根据AIRS反演的温度廓线确定的AIRS边界层高度低于利用探空观测资料确定的边界层高度,但能较好地再现边界层高度的变化,在没有探空数据时,可以用AIRS反演的温度廓线确定边界层高度。
关键词: 黄土高原边界层高度AIRS温湿廓线    
Abstract: Planetary boundary layer height (PBLH) plays an important role in turbulent mixing, convective activity, cloud formation, atmospheric pollutant diffusion and cloud/aerosol crimping. It is also the basic parameter for the study of atmospheric boundary layer, as well as important parameter for weather, climate and air quality modeling. Currently, radiosonde is the most widely used method for obtaining the planetary boundary layer temperature and humidity profile. However, most sites only launch the radiosonde twice a day (usually at 08:00 and 20:00, Beijing time), and these sites are inhomogeneously distributed. It is still very difficult to obtain the information on vertical profiles of temperature, humidity and planetary boundary layer height in areas where observations are sparse. In this study, the applicability of the temperature and relative humidity profile from the Atmospheric Infrared Sounder (AIRS) which have a global coverage and the feasibility of using AIRS temperature profile to determine the planetary boundary layer height over the Loess Plateau area were evaluated using radiosonde observation data obtained during the intensive observation periods in summer of 2012-2016. The results indicated that the correlation among the planetary boundary layer heights determined by six different methods are significant. The height differences among various methods are generally not more than 200 m, and the selection of critical Richardson number value has little influence on the determined planetary boundary layer height. On the other hand, AIRS retrieval products can well reflect the vertical variations in atmospheric temperature and moisture, with mean bias and root mean square error less than 1 K and 2 K for air temperature and they are not more than 10% and 20% for relative humidity, respectively. However, the error of surface air temperature between AIRS and radiosonde observation is relatively large, with the mean bias and the root mean square error being -1.68 K and 3.32 K respectively, which could affect the determination of the planetary boundary layer height. The comparison of planetary boundary layer height determined by using temperature profiles from the AIRS with that determined by using radiosonde through Parcel method shows that although the planetary boundary layer heights determined by AIRS temperature profiles are lower than that determined by radiosonde observations, it can reproduce the change of the planetary boundary layer height well. AIRS retrieval temperature profiles can be used to estimate planetary boundary layer height in the study area when radiosonde data are not available. The study will help enhancing the understanding of the planetary boundary layer over the Loess Plateau and provide modelers with information on planetary boundary layer characteristics that can be used to improve numerical model simulations.
Key words: Loess Plateau    boundary layer height    AIRS    temperature and moisture profile
收稿日期: 2017-08-25 出版日期: 2018-04-28
ZTFLH:  P421  
基金资助: 国家自然科学基金项目(41575014,41175009)
通讯作者: 余晔,E-mail:yyu@lzb.ac.cn     E-mail: yyu@lzb.ac.cn
作者简介: 程海艳(1993),女,新疆库尔勒人,硕士研究生,主要从事陆面过程研究.E-mail:haiyan8693@126.com
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
程海艳
余晔
陈晋北
姚惇
解晋
李江林

引用本文:

程海艳, 余晔, 陈晋北, 姚惇, 解晋, 李江林. 大气红外探测器(AIRS)温、湿廓线反演产品及边界层高度在黄土高原的验证[J]. 高原气象, 2018, 37(2): 432-442.

CHENG Haiyan, YU Ye, CHEN Jinbei, YAO Dun, XIE Jin, LI Jianglin. Validation of AIRS Retrieved Temperature and Moisture Products and Its Applicability for Boundary Layer Height Estimation in Loess Plateau. PLATEAU METEOROLOGY, 2018, 37(2): 432-442.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2017.00094        http://www.gyqx.ac.cn/CN/Y2018/V37/I2/432

Aumann H H, Chahine M T, Gautier C, et al, 2003. AIRS/AMSU/HSB on the Aqua mission:design, science objectives, data products, and processing systems[J]. IEEE Trans Geosci Remote Sens, 41(2):253-264. DOI:10.1109/TGRS. 2002.808356.
Botes D, Mecikalski J R, Jedlovec G J, 2012. Atmospheric Infrared Sounder (AIRS) sounding evaluation and analysis of the pre-convective environment[J]. J Geophys Res Atmos, 117(117):9205. DOI:10.1029/2011JD016996.
Boylan P, Wang J, Cohn S A, et al, 2015. Validation of AIRS version 6 temperature profiles and surface-based inversions over Antarctica using Concordiasi dropsondedata[J]. J Geophys Res Atmos, 120(3):992-1007. DOI:10.1002/2014JD022551.
Divakarla M G, Barnet C D, Goldberg M D, et al, 2006. Validation of atmospheric infrared sounder temperature and water vapor retrievals with matched radiosonde measurements and forecasts[J]. J Geophys Res Atmos, 111(D9):9-15. DOI:10.1029/2005JD006116.
Eresmaa N, Karppinen A, Joffre S M, et al, 2005. Mixing height determination by ceilometer[J]. Atmospheric Chemistry & Physics Discussions, 5(6):12697-12722. DOI:10.5194/acpd-5-12697-2005.
Gettelman A, Kinnison D E, Dunkerton T J, et al, 2004. Impact of monsoon circulations on the upper troposphere and lower stratosphere[J]. J Geophys Res Atmos, 109(22):51-67. DOI:10.1029/2004JD004878.
Heffter J L, 1980. Transport layer depth calculations[C]//Bull Amer Meteor Soc. 45 Beacon ST, Boston, MA 02108-3693:Amer Meteorological Soc, 61(1):97-97.
Hennemuth B, Lammert A, 2006. Determination of the atmospheric boundary layer height from radiosonde and lidarbackscatter[J]. Bound-Layer Meteor, 120(1):181-200. DOI:10.1007/s10546-005-9035-3.
Holzworth G C, 1964. Estimates of mean maximum mixing depths in the contiguous United States[J]. Mon Wea Rev, 1964, 92(5):235-242. DOI:10.1175/1520-0493(1964)092<0235:EOMMMD>2.3. CO; 2.
Holzworth G C, 1967. Mixing depths, wind speeds and air pollution potential for selected locations in the United States[J]. J Appl Meteor, 6(6):1039-1044. DOI:10.1175/1520-0450(1967)006<1039:MDWSAA>2.0. CO; 2.
Liu S Y, Liang X Z, 2010. Observed diurnal cycle climatology of planetary boundary layer height[J]. J Climate, 23(21):5790-5809. DOI:10.1175/2010jcli3552.1.
Martins J P A, Teixeira J, Soares P M M, et al, 2010. Infrared sounding of the trade-wind boundary layer:AIRS and the RICO experiment[J]. Geophys Res Lett, 37(37):701-719. DOI:10.1029/2010GL045902.
Mehta S K, Ratnam M V, Sunilkumar S V, et al, 2016. Diurnal variability of the atmospheric boundary layer height over a tropical station in the Indian monsoon region[J]. Atmos Chem Phys, 17(1):1-29. DOI:10.5194/acp-17-531-2017.
Rao S T, Hao W, Xiu A, et al, 2001. Evaluating the performance of regional-scale photochemical modeling systems:Part I-meteorological predictions[J]. Atmos Environ, 35(24):4159-4174. DOI:10.1016/S1352-2310(01)00182-0.
Reale T, Sun B, Tilley F H, et al, 2012. The NOAA products validation system (NPROVS)[J]. J Atmos Ocean Technol, 29(5):629-645. DOI:10.1175/JTECH-D-11-00072.1.
Savitzky A, Golay M J E, 1964. Smoothing and differentiation of data by simplified least squares procedures[J]. Analytical Chemistry, 36(8):1627-1639. DOI:10.1021/ac60214a047.
Seibert P, Beyrich F, Gryning S E, et al, 2000. Review and intercomparison of operational methods for the determination of the mixing height[J]. Atmos Environ, 34(7):1001-1027. DOI:10.1016/S1352-2310(99)00349-0.
Seidel D J, Ao C O, Li K, 2010. Estimating climatological planetary boundary layer heights from radiosonde observations:Comparison of methods and uncertainty analysis[J]. J Geophys Res Atmos, 115(D16):751-763. DOI:10.1016/S1352-2310(99)00349-0.
Sivaraman C, McFarlane, S, Chapman E, 2013. Planetary boundary layer (PBL) height value added product (VAP):Radiosonde retrievals[J/OL]. U. S. DOE, Office of Science, Office of Biological and Environmental Research. DOE/SC-ARM/TR-132. http://http://www.doc88.com/p-9032320085477.html.[2017-08-20]
Stull R B, 2012. An introduction to boundary layermeteorology[M]. Springer Science & Business Media.
Yu S, Eder B K, Dennis R, et al, 2006. New unbiased symmetric metrics for evaluation of air qualitymodels[J]. Atmos Sci Lett, 7(1):26-34. DOI:10.1002/asl. 125.
Wu L, 2009. Comparison of atmospheric infrared sounder temperature and relative humidity profiles with NASA African monsoon multidisciplinary analyses (NAMMA), dropsonde observations[J]. J Geophys Res Atmos, 114(D19):5577-5594. DOI:10.1029/2009JD012083.
Zhang W C, Guo J P, Miao Y C, et al, 2016. Planetary boundary layer height from CALIOP compared to radiosonde over China[J]. Atmos Chem Phys, 16(15):1-31. DOI:10.5194/acp-16-9951-2016.
Zilitinkevich S, Baklanov A, 2002. Calculation of the height of the stable boundary layer in practical applications[J]. Bound-Layer Meteor, 5(3):389-409. DOI:10.1023/A:1020376832738.
陈立, 张杰, 刘振元, 2015. 暴雨发生前AIRS卫星资料适用性检验研究[J]. 气象科学, 35(6):710-719. Cheng L, Zhang J, Liu Z Y, 2015. The examination and research for AIRS data applicability before rainstorm[J]. J Meteor Sci, 35(6):710-719. DOI:10.3969/2015jms. 0053.
高文华, 赵凤生, 盖长松, 2006. 大气红外探测器(AIRS)温、湿度反演产品的有效性检验及在数值模式中的应用研究[J]. 气象学报, 64(3):271-280. Gao W H, Zhao F S, Gai C S, 2006. Validation of AIRS retrieval temperature and moisture products and their application in numerical models[J]. Acta Meteor Sinica, 64(3):271-280. DOI:10.11676/qxxb2006.026.
李岩瑛, 张强, 张爱萍, 等, 2016. 干旱半干旱区边界层变化特征及其影响因子分析[J]. 高原气象, 35(2):385-396. Li Y Y, Zhang Q, Zhang A P, et al, 2016. Analysis on atmosphere boundary layer variation characteristics and their impact factors in arid region and semi-arid region over Northwest China[J]. Plateau Meteor, 35(2):385-396. DOI:10.7522/j. issn. 1000-0534.2014.00153.
卢爱刚, 2009. 半个世纪以来黄土高原降水的时空变化[J]. 生态环境学报, 18(3):957-959. Lu A G, 2009. Spatial and temporal precipitation variation on the Loess Plateau in the past half century[J]. Ecology Environ Sci, 18(3):957-959. DOI:10.16258/j. cnki. 1674-5906.2009.03.027.
倪成诚, 李国平, 熊效振, 2013. AIRS资料在川藏地区适用性的验证[J]. 山地学报, 31(6):656-663. Ni C C, Li G P, Xiong X Z, 2013. Validation of the applicability of AIRS data in Sichuan-Tibet region of China[J]. J Mountain Sci, 31(6):656-663. DOI:10.16089/j. cnki. 1008-2786.2013.06.013.
万云霞, 张宇, 张瑾文, 等, 2017. 感热变化对东亚地区大气边界层高度的影响[J]. 高原气象, 36(1):173-182. Wan Y X, Zhang Y, Zhang J W, et al, 2017. Influence of sensible heat on planetary boundary layer height in East Asia[J]. Plateau Meteor, 36(1):173-182. DOI:10.7522/j. issn. 1000-0534.2016.00001.
韦志刚, 文军, 吕世华, 等, 2005. 黄土高原陆-气相互作用预试验及其晴天地表能量特征分析[J]. 高原气象, 24(4):545-555. Wei Z G, Wen J, Lü S H, et al, 2005. A primary field experiment of land-atmosphere interaction over the Loess Plateau and its ground surface energy in clear day[J]. Plateau Meteor, 24(4):545-555.
占瑞芬, 李建平, 2008. 青藏高原地区大气红外探测器(AIRS)资料质量检验及揭示的上对流层水汽特征[J]. 大气科学, 32(2):242-260. Zhan R F, Li J P, 2008. Validation and characteristics of upper tropospheric water vapor over the Tibetan Plateau from AIRS satellite retrieval[J]. Chinese J Atmos Sci, 32(2):242-260. DOI:10.3878/j. issn. 1006-9895.2008.02.05.
张强, 王胜, 2008. 关于黄土高原陆面过程及其观测试验研究[J]. 地球科学进展, 23(2):167-173. Zhang Q, Wang S, 2008. On land surface processes and its experimental study in Chinese Loess Plateau[J]. Adv Earth Sci, 23(2):167-173. DOI:10.11867/j. issn. 1001-8166.2008.02.0167.
张强, 张杰, 乔娟, 等, 2011. 我国干旱区深厚大气边界层与陆面热力过程的关系研究[J]. 中国科学:地球科学, 41(9):1365-1374. Zhang Q, Zhang J, Qiao J, et al, 2011. Relationship of atmospheric boundary layer depth with thermodynamic processes at the land surface in arid regions of China[J]. Sci China Earth Sci, 41(9):1365-1374. DOI:10.1007/s11430-011-4207-0.
赵采玲, 吕世华, 韩博, 等, 2016. 夏季巴丹吉林沙漠残余层与深厚对流边界层的关系研究[J]. 高原气象, 35(4):1004-1014. Zhao C L, Lü S H, Han B, et al, 2016. Relationship between the convective boundary layer and residual layer over BadainJaran desert in summer[J]. Plateau Meteor, 35(4):1004-1014. DOI:10.7522/j. issn. 1000-0534.2015.00080.
[1] 杜一博, 张强, 王凯嘉, 张红丽. 西北干旱区夏季晴天、阴天边界层结构及其陆面过程对比分析[J]. 高原气象, 2018, 37(1): 148-157.
[2] 李亚飞, 胡景高, 任荣彩. 2009年冬季北半球平流层爆发性增温的个例分析[J]. 高原气象, 2017, 36(6): 1576-1586.
[3] 郝巨飞, 张功文, 王晓娟, 杨允凌. 一次环境大气重污染过程的监测分析[J]. 高原气象, 2017, 36(5): 1404-1411.
[4] 赵艳茹, 张珂铨, 毛文茜, 樊旭, 刘晨, 张文煜. 100年来东亚和北非干旱半干旱区边界层高度的变化特征研究[J]. 高原气象, 2017, 36(5): 1304-1314.
[5] 周旭, 张镭, 陈丽晶, 郭琪. 沙尘暴过程中沙尘气溶胶对气象场的影响[J]. 高原气象, 2017, 36(5): 1422-1432.
[6] 汪明圣, 郭世昌. ENSO循环对东亚地区平流层臭氧分布的影响[J]. 高原气象, 2017, 36(3): 865-874.
[7] 万凌峰, 郭栋, 刘仁强, 施春华, 苏昱丞. WACCM3对夏季青藏高原臭氧谷双心结构的模拟性能评估[J]. 高原气象, 2017, 36(1): 57-66.
[8] 李照国, 吕世华, 文莉娟, 奥银焕, 赵林, 张少波. 一次干冷空气过境对鄂陵湖地区大气边界层过程的影响[J]. 高原气象, 2016, 35(5): 1200-1211.
[9] 黎成超, 郭世昌, 易琦, 黎海凤. 北半球中高纬地区冬季大气臭氧与极涡强度关系[J]. 高原气象, 2016, 35(5): 1290-1297.
[10] 徐路扬, 陈权亮. 行星波活动对不同类型SSW的影响[J]. 高原气象, 2016, 35(5): 1389-1400.
[11] 李岩瑛, 张强, 张爱萍, 陈英, 杨梅. 干旱半干旱区边界层变化特征及其影响因子分析[J]. 高原气象, 2016, 35(2): 385-396.
[12] 张杰, 田文寿, 隆霄, 田红瑛, 黄倩, 许平平, 杨琴, 张健恺. 一次南疆强沙尘暴沙尘向平流层上传的事实及模拟[J]. 高原气象, 2015, 34(4): 991-1004.
[13] 常倬林, 崔洋, 张武, 翟涛, 田磊. 宁夏典型沙尘天气条件下气溶胶分布特征研究[J]. 高原气象, 2015, 34(4): 1049-1056.
[14] 杨琴, 田文寿, 隆霄, 陈磊, 张杰, 黄倩, 田红瑛. 青藏高原沙尘示踪物从对流层向平流层传输的数值模拟[J]. , 2014, 33(4): 887-899.
[15] 郭世昌, 段雪梅, 苏锦兰, 李慧晶, 常有礼, 陈艳, 张秀年. 特大森林火灾对O3总量变化影响的初步分析[J]. 高原气象, 2014, 33(2): 567-573.