Please wait a minute...
高级检索
高原气象  2018, Vol. 37 Issue (4): 923-935    DOI: 10.7522/j.issn.1000-0534.2017.00097
论文     
藏东南地区草地下垫面湍流通量和辐射平衡各分量的变化特征
李宏毅1, 肖子牛2, 朱玉祥1
1. 中国气象局气象干部培训学院, 北京 100081;
2. 中国科学院大气物理研究所/大气科学和地球流体力学数值模拟国家重点实验室, 北京 100029
Variation Characteristics of the Surface Turbulent Flux and the Components of Radiation Balance over the Grassland in the Southeastern Tibetan Plateau
LI Hongyi1, XIAO Ziniu2, ZHU Yuxiang1
1. China Meteorological Administration Training Centre, Beijing 100081, China;
2. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
 全文: PDF 
摘要: 利用2013年5月20日至7月9日藏东南林芝地区草地下垫面的野外试验站点观测资料,分析了晴雨转换过程中林芝地区草地下垫面的近地层基本气象要素、湍流通量和辐射平衡各分量的变化特征,并着重分析了各个变量之间的相互关系,对比分析它们在典型晴天和阴天条件下的差异。结果表明:(1)草地观测站的各气象要素的变化趋势相互吻合,即相对湿度与降水有着一致的变化趋势,而气温、地面温度和风速均与降水的变化相反;观测期间草地站的潜热交换大于感热交换,在无降水时期,感热明显偏高,潜热偏低,降水时期则相反;感热与向下短波辐射的变化趋势一致,同时,向上短波辐射、向上长波辐射、净辐射、地表反照率和土壤热通量均与向下短波辐射保持同步的变化关系,而向下长波辐射则呈现出相反的变化。(2)典型晴天和阴天的分析结果表明,晴天条件下各变量的日变化均比阴天条件下剧烈,在白天,感热和潜热在典型晴天的值均大于典型阴天天气下的值,除向下长波辐射外,其他地表辐射分量在晴天条件下的值远大于阴天的值;在夜间,晴天的向上长波辐射、净辐射和土壤热通量小于阴天的值。(3)相对湿度最大值出现在早晨,最低值出现在午后;风速的最小值出现在早晨,最大值出现在中午,且基本上都是晴天天气下大于阴天天气下。因此,藏东南林芝地区草地下垫面的感热、潜热、土壤热通量、辐射平衡各分量、基本气象要素均与晴、雨的转化有着非常密切的协同变化关系,这些变量之间相关系数高,吻合度好,表明了该边界层观测数据的可靠性,该观测试验数据可为数值模式在藏东南林芝地区地气交换过程的模拟提供重要的数据基础。
关键词: 藏东南林芝地区草地下垫面湍流通量地表辐射分量基本气象要素    
Abstract: Based on field observations of the grassland over Nyingchi area in the southeastern Tibetan Plateau for the period from 20 May to 9 July 2013, the variation characteristics of the basic meteorological elements, the surface turbulent flux and the components of the radiation balance over the grassland in Nyingchi area under different weather changes were analyzed, and the relationships among these variables and their features under typical sunny day and cloudy day were analyzed emphatically in this paper. The results show that:(1) The change trends among each meteorological elements are match well with each other, the variation of the relative humidity is correlated with that of the precipitation, but that those of the air temperature, ground temperature and wind speed are anti-correlated with that of precipitation; During the observation period, more latent heat than sensible heat is exchanged, sensible heat flux is definitely higher during the days without rain, but latent heat flux is lower, things are the opposite in the precipitation period; The variation of the sensible heat flux is consistent with that of the total solar radiation (DR), and the variations of the reflective solar radiation (UR), the long wave radiation from the earth (ULR), the net radiation (Rn), the surface albedo and the soil heat flux are also correlated with the DR, but that of the long wave radiation from the atmosphere (DLR) is anti-correlated with the DR. (2) The analysis results of the typical sunny day and the typical cloudy day show that the diurnal variation amplitude of sensible heat flux and latent heat flux in sunny condition is larger than that in cloudy condition, during the daytime, the sensible heat flux and the latent heat flux in the typical sunny day is significantly greater than that in the typical cloudy day, except the downward long wave radiation, the other components of the surface radiation balance in the sunny day are much larger than that in the cloudy day; At night, the upward long wave radiation, the net radiation and the soil heat flux in the sunny day are smaller than that in the cloudy day. (3) The maximum value of relative humidity appears in the morning, and the lowest value occurs in the afternoon; The minimum value of wind speed appears in the morning and the maximum value appears at noon, and the values in the sunny day are mostly greater than that in the cloudy day. As a result, the sensible heat flux, latent heat flux, soil heat flux, each components of radiation balance and basic meteorological elements over the grassland at Nyingchi area in the southeastern Tibetan Plateau all have very close coordinated variation relationships with weather changes, the correlation coefficients between these variables are high, and these variables fit well with each other. It shows that this boundary layer observation data has high reliability, and this experiment observed data can provide important data basis for numerical model to simulate the surface-to-air exchange process over Nyingchi area in the southeastern Tibetan Plateau.
Key words: Southeastern Tibetan Plateau    Nyingchi area    grassland    surface turbulent flux    components of radiation balance    basic meteorological elements
收稿日期: 2017-09-08 出版日期: 2018-08-22
:  P404  
基金资助: 国家重点研发计划(2017YFC1502005);国家自然科学基金项目(91637208);公益性行业(气象)科研专项(GYHY201206041);中国气象局气候变化专项(CCSF201806),中国气象局气象预报业务关键技术发展专项[YBGJXM(2018)03-15];国家自然科学青年基金项目(41505079)
作者简介: 李宏毅(1981-),女,陕西西安人,副教授,主要从事气候年代际变化和边界层研究.E-mail:lihongyi@cma.gov.cn
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李宏毅
肖子牛
朱玉祥

引用本文:

李宏毅, 肖子牛, 朱玉祥. 藏东南地区草地下垫面湍流通量和辐射平衡各分量的变化特征[J]. 高原气象, 2018, 37(4): 923-935.

LI Hongyi, XIAO Ziniu, ZHU Yuxiang. Variation Characteristics of the Surface Turbulent Flux and the Components of Radiation Balance over the Grassland in the Southeastern Tibetan Plateau. Plateau Meteorology, 2018, 37(4): 923-935.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2017.00097        http://www.gyqx.ac.cn/CN/Y2018/V37/I4/923

Bagayoko F, Yonkeu S, Elbers J, et al, 2007. Energy partitioning over the West African savanna:Multi-year evaporation and surface conductance measurements in Eastern Burkina Faso[J]. J Hydrology, 334(3-4):545-559.
Kuo H L, Qian Y F, 1981. Influence of the Tibetan Plateau on cumulative and diurnal changes of weather and climate in summer[J]. Mon Wea Rev, 109(11):2337-2356.
Tanner C, Thurtell G, 1969. Anemoclinometer measurements of Reynolds stress and heat transport in the atmospheric surface layer[R]. Department of Soil Science, University of Wisconsin, Madison, WI, Research and Development Technical Report, ECOM 66-G22-F, 82.
Zhou L, Zou H, Ma S, et al, 2015. The observed impacts of South Asian summer monsoon on the local atmosphere and the near surface turbulent heat exchange over the Southeast Tibet[J]. J Geophys Res Atmos, 120(22):11509-11518, DOI:10.1002/2014JD022928.
Zou H, Li P, Ma S P, et al, 2012. The local atmosphere and the turbulent heat transfer in the eastern Himalayas[J]. Adv Atmos Sci, 29(3):435-440, DOI:10.1007/s00376-011-0233-2.
Zou H, Ma S, Zhou L, et al, 2009. Measured turbulent heat transfer on the northern slope of Mt. Everest and its relation to the south Asian summer monsoon[J]. Geophys Res Lett, 36:L09810, DOI:10.1029/2008GL036984.
Zou H, Zhou L, Ma S, et al, 2008. Local wind system in the Rongbuk Valley on the northern slope of Mt. Everest[J]. Geophys Res Lett, 35:L13813, DOI:10.1029/2008GL033466.
卞林根, 陆龙骅, 程彦杰, 等, 2001. 青藏高原东南部昌都地区近地层湍流输送的观测研究[J]. 应用气象学报, 12(1):1-13. Bian L G, Lu L H, Cheng Y J, et al, 2001. Observational studies of surface layer turbulence transport over Changdu area in the southeastern Qinghai-Tibet Plateau[J]. Quart J Appl Meteor, 12(1):1-13.
季国良, 顾本文, 吕兰芝, 2002. 青藏高原北部的大气加热场特征[J]. 高原气象, 21(3):238-242. Ji G L, Gu B W, Lü L Z, 2002. Characteristics of atmospheric heating field over northern Qinghai-Xizang Plateau[J]. Plateau Meteor, 21(3):238-242.
季国良, 时兴和, 高务祥, 2001. 藏北高原地面加热场的变化及其对气候的影响[J]. 高原气象, 20(3):239-244. Ji G L, Shi X H, Gao W X, 2001. The variation of surface heating field over Northern Qinghai-Tibet Plateau and its effect on climate[J]. Plateau Meteor, 20(3):239-244.
李宏毅, 肖子牛, 朱玉祥, 2018. 藏东南草地下垫面地气通量交换日变化的数值模拟[J]. 高原气象, 37(2):443-454. Li H Y, Xiao Z N, Zhu Y X, 2018. Numerical simulation of diurnal variation of surface-to-air exchange over the grassland in the southeast Tibet[J]. Plateau Meteorology, 37(2):443-454. DOI:10.7522/j. issn. 1000-0534.2017.00052.
李斐, 邹捍, 周立波, 等, 2017. WRF模式中边界层参数化方案在藏东南复杂下垫面适用性研究[J]. 高原气象, 36(2):340-357. Li F, Zou H, Zhou L B, et al, 2017. Study of boundary layer parameterization schemes' applicability of WRF model over complex underlying surfaces in Southeast Tibet[J]. Plateau Meteor, 36(2):340-357. DOI:10.7522/j. issn. 1000-0534.2016.00041.
李国平, 段廷扬, 巩远发, 2000. 青藏高原西部地区的总体输送系数和地面通量[J]. 科学通报, 45(8):865-869. Li G P, Duan T Y, Gong Y F, 2000. The bulk transfer coefficients and surface flux over the western region of Qinghai-Tibet plateau[J]. Chinese Sci Bull, 45(8):865-869.
李娟, 李跃清, 蒋兴文, 等, 2016. 青藏高原东南部复杂地形区不同天气状况下陆气能量交换特征分析[J]. 大气科学, 40(4):777-791. Li J, Li Y Q, Jiang X W, et al, 2016. Characteristics of land-atmosphere energy exchanges over complex terrain area of southeastern Tibetan Plateau under different synoptic conditions[J]. Chinese J Atmos Sci, 40(4):777-791.
李英, 胡泽勇, 2006. 藏北高原地表反照率的初步研究[J]. 高原气象, 25(6):1034-1041. Li Y, Hu Z Y, 2006. A preliminary study on land-surface albedo in northern Tibetan Plateau[J]. Plateau Meteor, 25(6):1034-1041.
李英, 李跃清, 赵兴炳, 2008. 青藏高原东部与成都平原大气边界层对比分析Ⅰ-近地层微气象学特征[J]. 高原山地气象研究, 28(1):30-35. Li Y, Li Y Q, Zhao X B, 2008. The comparison and analysis of atmospheric boundary layer observational data between the east of Tibetan Plateau and Chengdu Plain(I)-Characteristics of micrometeorology in surface layer[J]. Plateau Mountain Meteor Res, 28(1):30-35.
李跃清, 刘辉志, 冯健武, 等, 2009. 高山草甸下垫面夏季近地层能量输送及微气象特征[J]. 大气科学, 33(5):1003-1014. Li Y Q, Liu H Z, Feng J W, et al, 2009. Characteristics of energy transfer and micrometeorology in the surface layer of the atmosphere in summer over the alpine meadow of the Tibetan Plateau[J]. Chinese J Atmos Sci, 33(5):1003-1014.
刘辉志, 洪钟祥, 2000. 青藏高原改则地区近地层湍流特征[J]. 大气科学, 24(3):289-300. Liu H Z, Hong Z X, 2000. Turbulent characteristics in the surface layer over Gerze Area in the Tibetan Plateau[J]. Chinese J Atmos Sci, 24(3):289-300.
马耀明, 姚檀栋, 王介民, 2006. 青藏高原能量和水循环试验研究-GAME/Tibet与CAMP/Tibet研究进展[J], 高原气象, 25(2):344-351. Ma Y M, Yao T D, Wang J M, 2006. Experimental study of energy and water cycle in Tibetan Plateau-The progress introduction on the study of GAME/Tibet and CAMP/Tibet[J]. Plateau Meteor, 25(2):344-351.
彭艳, 张宏升, 刘辉志, 等, 2005. 青藏高原近地面层气象要素变化特征[J]. 北京大学学报(自然科学版), 41(2):180-190. Peng Y, Zhang H S, Liu H Z, et al, 2005. Characteristics of micro-meteorology in the surface layer over Tibetan Plateau Area[J]. Acta Scientiarum Naturalium, 41(2):180-190.
钱永甫, 1993. 气候变化中下垫面作用的数值模拟[J]. 大气科学, 17(3):283-293. Qian Y F, 1993. Numerical simulation of the effects of underlying surfaces on the climate change[J]. Chinese J Atmos Sci, 17(3):283-293.
陶诗言, 陈联寿, 徐祥德, 等, 1999. 第二次青藏高原大气科学试验理论研究进展(一、二、三)[M]. 北京:气象出版社, 348. Tao S Y, Chen L S, Xu X D, et al, 1999. The theoretical research progress of the Second Atmospheric Science Experiment on Qinghai-Tibet Plateau (TIPEX-GAME/TIBET) (Volumes 1, 2, 3)[M]. Beijing:China Meteorological Press, 348.
涂钢, 刘辉志, 董文杰, 2009. 半干旱区不同下垫面近地层湍流通量特征分析[J]. 大气科学, 33(4):719-725. Tu G, Liu H Z, Dong W J, 2009. Characteristics of the surface turbulent fluxes over degraded grassland and cropland in the semi-arid area[J]. Chinese J Atmos Sci, 33(4):719-725.
王澄海, 董文杰, 韦志刚, 2003. 青藏高原季节冻融过程与东亚大气环流关系的研究[J]. 地球物理学报, 46(3):309-316. Wang C H, Dong W J, Wei Z G, 2003. Study on relationship between the frozen-thaw process in Qinghai-Xizang Plateau and circulation in East-Asia[J]. Chinese J Geophys, 46(3):309-316.
王鸽, 韩琳, 唐信英, 等, 2014. 藏东南地区复杂下垫面能量收支特征分析[J]. 高原山地气象研究, 34(4):44-47. Wang G, Han L, Tang X Y, et al. 2014. Analysis on the features of energy budget on the complicated underlying surfaces in southeast Tibet[J]. Plateau Mountain Meteorology Res, 34(4):44-47.
王介民, 邱华盛, 2000. 中日合作亚洲季风实验-青藏高原实验(GAME-Tibet)[J]. 中国科学院院刊, 5:386-388. Wang J M, Qiu H S, 2000. The Asian monsoon experiment cooperated between China and Japan-the Qinghai-Tibet Plateau (GAME-Tibet)[J]. Bulletin of Chinese Academy of Sciences, 5:386-388.
吴国雄, 孙淑芬, 陈文, 等, 2003. 青藏高原与西北干旱区对气候灾害的影响[M]. 北京:气象出版社, 207. Wu G X, Sun S F, Chen W, et al, 2003. The impact of Qinghai-Tibet Plateau and northwest arid areas on climate disasters[M]. Beijing:China Meteorological Press, 207.
徐祥德, 陶诗言, 王继志, 等, 2002. 青藏高原-季风水汽输送"大三角扇形"影响域特征与中国区域旱涝异常的关系[J]. 气象学报, 60(3):257-266. Xu X D, Tao S Y, Wang J Z, et al, 2002. The relationship between water vapor transport features of Tibetan Plateau-monsoon"Large Triangle"affecting region and drought-flood abnormality of China[J]. Acta Meteor Sinica, 60(3):257-266.
徐祥德, 周明煜, 陈家宜, 等, 2001. 青藏高原地-气过程动力、热力结构综合物理图象[J]. 中国科学(地球科学), 31(5):428-440. Xu X D, Zhou M Y, Chen J Y, et al, 2001. Comprehensive physical image of surface-to-air process of dynamic and thermodynamic structure of land-air process on the Tibetan Plateau[J]. Sci China (Earth Sci), 31(5):428-440.
杨智, 刘劲松, 朱以维, 等, 2010. 云贵高原西部大理地区近地层湍流特征分析[J]. 大气科学学报, 33(1):117-124. Yang Z, Liu J S, Zhu Y W, et al, 2010. Analyses of turbulence characteristics in the surface layer at Dali of the western Yunnan Guizhou Plateau[J]. Trans Atmos Sci, 33(1):117-124.
叶笃正, 高由禧, 1979. 青藏高原气象学[M]. 北京:科学出版社, 278. Ye D Z, Gao Y X, 1979. Tibetan Plateau meteorology[M]. Beijing:Science Press, 278.
叶笃正, 张捷迁, 1974. 青藏高原加热作用对夏季东亚大气环流影响的初步模拟实验[J]. 中国科学, 17(3):301-320. Ye D Z, Zhang J Q, 1974. A preliminary experimental simulation on the heating effect of the Tibetan Plateau on the general circulation over Eastern Asia in summer[J]. Scientia Sinica, 17(3):301-320.
岳平, 张强, 杨金虎, 等, 2011. 黄土高原半干旱草地地表能量通量及闭合率[J]. 生态学报, 31(22):6866-6876. Yue P, Zhang Q, Yang J H, et al, 2011. Surface heat flux and energy budget for semi-arid grassland on the Loess Plateau[J]. Acta Ecologica Sinica, 31(22):6866-6876.
张强, 曹晓彦, 2003. 敦煌地区荒漠戈壁地表热量和辐射平衡特征的研究[J]. 大气科学, 27(2):245-254. Zhang Q, Cao X Y, 2003. The influence of synoptic conditions on the averaged surface heat and radiation budget energy over desert or gobi[J]. Chinese J Atmos Sci, 27(2):245-254.
张人禾, 徐祥德, 2012. 青藏高原及东缘新一代大气综合探测系统应用平台-中日合作JICA项目[J]. 中国工程科学, 14(9):102-112. Zhang R H, Xu X D, 2012. An applying platform for the new generation of the comprehensive atmospheric observing system over the Tibetan Plateau and its eastern region-a China-Japan cooperative JICA Project[J]. Chinese Engineer Sci, 14(9):102-112.
章基嘉, 朱抱真, 朱福康, 等, 1988. 青藏高原气象学进展[M]. 北京:科学出版社, 268. Zhang J J, Zhu B Z, Zhu F K, et al, 1988. The progress introduction on the study of Tibetan Plateau meteorology[M]. Beijing:Science Press, 268.
周德刚, 黄刚, 马耀明, 2012. 中国西北干旱区戈壁下垫面夏季的热力输送[J]. 大气科学学报, 35(5):541-549. Zhou D G, Huang G, Ma Y M, 2012. Summer heat transfer over a Gobi underlying surface in the arid region of Northwest China[J]. Trans Atmos Sci, 35(5):541-549.
周明煜, 徐祥德, 卞林根, 等, 2000. 青藏高原大气边界层观测分析与动力学研究[J]. 北京:气象出版社, 125. Zhou M Y, Xu X D, Bian L G, et al, 2000. Observational analysis and dynamic study of atmospheric boundary layer on Tibetan Plateau[J]. Beijing:China Meteorological Press, 125.
[1] 刘郁珏, 苗世光, 胡非, 刘玉宝. 冬奥会小海坨山赛区边界层风场大涡模拟研究[J]. 高原气象, 2018, 37(5): 1388-1401.
[2] 严晓强, 胡泽勇, 孙根厚, 谢志鹏. 那曲高寒草地上四种地表通量计算方法的对比[J]. 高原气象, 2018, 37(2): 358-370.
[3] 苏东生, 胡秀清, 文莉娟, 赵林, 李照国. 青海湖热力状况对气候变化响应的数值研究[J]. 高原气象, 2018, 37(2): 394-405.
[4] 李宏毅, 肖子牛, 朱玉祥. 藏东南草地下垫面地气通量交换日变化的数值模拟[J]. 高原气象, 2018, 37(2): 443-454.
[5] 高冠龙, 冯起, 张小由, 鱼腾飞. 黑河下游影响荒漠河岸胡杨林蒸腾的冠层与大气耦合分析[J]. 高原气象, 2018, 37(1): 234-239.
[6] 高冠龙, 冯起, 张小由, 鱼腾飞. 蒸散发模型结合微气象数据模拟陆面蒸散发研究进展[J]. 高原气象, 2017, 36(6): 1630-1637.
[7] 许启慧, 范引琪, 井元元, 杜康云, 张金龙, 刘金平. 1972—2013年河北省大气环境容量的气候变化特征分析[J]. 高原气象, 2017, 36(6): 1682-1692.
[8] 陈丽晶, 张镭, 梁捷宁, 周旭. 半干旱区不同下垫面大气湍流通量比较分析[J]. 高原气象, 2017, 36(5): 1325-1335.
[9] 李晓霞, 黄涛, 王兴, 梁东升. 兰州新区近地层风场时空特征分析[J]. 高原气象, 2017, 36(4): 1001-1009.
[10] 高世仰, 张杰, 罗琦. 青藏高原非均匀下垫面热力输送系数的估算[J]. 高原气象, 2017, 36(3): 596-609.
[11] 孙少波, 陈报章, 车涛, 张慧芳, 陈婧, 车明亮, 林晓凤, 郭立峰. 青藏高原季节性冻土湿度模拟及参数优化——以黑河上游为例[J]. 高原气象, 2017, 36(3): 643-656.
[12] 张新科, 陈晋北, 余晔, 赵素平, 贾伟. 雷暴系统影响下的黄土高原塬区微气象特征研究[J]. 高原气象, 2017, 36(2): 384-394.
[13] 贾东于, 文军, 马耀明, 刘蓉, 王欣, 周娟, 陈金雷. 植被对黄河源区水热交换影响的研究[J]. 高原气象, 2017, 36(2): 424-435.
[14] 李怀香, 刘绍民, 施生锦, 徐自为, 朱忠礼. 国产光学型大孔径闪烁仪的技术性能分析[J]. 高原气象, 2017, 36(2): 575-585.
[15] 徐安伦, 李建, 彭浩, 孙绩华. 洱海湖滨农田下垫面大口径闪烁仪与涡动相关仪测量的湍流热通量对比分析[J]. 高原气象, 2017, 36(1): 98-106.
img

QQ群聊

img

官方微信