Please wait a minute...
高级检索
高原气象  2018, Vol. 37 Issue (4): 899-910    DOI: 10.7522/j.issn.1000-0534.2017.00099
论文     
青藏高原积雪时空变化特征及年际异常成因
保云涛, 游庆龙, 谢欣汝
南京信息工程大学气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室/气象灾害预报预警与评估协同创新中心, 江苏 南京 210044
Spatial-temporal Variability of the Snow Depth over the Qinghai-Tibetan Plateau and the Cause of Its Interannual Variation
BAO Yuntao, YOU Qinglong, XIE Xinru
Key Laboratory of Meteorological Disaster, Ministry of Education(KLME)/Joint International Research Laboratory of Climate and Environment Change(ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters(CIC-FEMD);Nanjing University of Information Science and Technology(NUIST), Nanjing 210044, Jiangsu, China
 全文: PDF 
摘要: 利用国家气象信息中心提供的日积雪深度的台站观测资料以及JRA55提供的大气环流再分析资料,分析了1961-2013年前冬(11月至次年1月)和后冬(2-4月)青藏高原中东部地区积雪深度(以下简称积雪)的时空变化特征,探究了影响高原中东部整体积雪异常和年际变化的环流形态及水汽条件。结果表明,高原积雪以显著的年际变化和年代际变化为主,在空间分布上具有明显的不均匀性,海拔越高,积雪的年际变率越大。不论前冬还是后冬,高原中东部积雪最主要的变化形势均为全区一致型。1961-2013年前冬和后冬积雪无明显的长期变化趋势,前冬的积雪在1996年以前显著增加,1996年以后转为减少趋势。从高原积雪年际变化的成因来看,前冬积雪很可能同时受北极涛动和高原附近位势高度年际变化的主导,后冬积雪受高原附近位势高度变化的主导,并受北极涛动年际变化的调节。当高原积雪偏多时,阿拉伯海到青藏高原以东地区的位势高度偏低,导致南支槽活跃,高原南侧西风急流加强,槽前携带的水汽增加,副热带高压偏北偏强同时其外围携带的水汽增加;贝加尔湖脊加强有利于引导冷空气南下,冷空气和暖湿空气在高原东部交汇使得高原中东部降雪和积雪增加。
关键词: 青藏高原积雪分布时空特征北极涛动环流成因    
Abstract: Based on daily snow depth observation data from National Meteorological Information Center and atmospheric circulation data from JRA55 reanalysis, the spatial-temporal variability of snow depth over the middle east area of Qinghai-Tibetan Plateau (QTP) in early winter (November to subsequent January) and late winter (February to April) during 1961-2013 was analyzed. The circulation patterns and water vapor conditions affecting the snow depth anomalies and its interannual variations over the QTP were analyzed. The results show that, interannual and interdecadal variations of snow depth over the QTP is significant. Spatial distribution of snow depth is uneven, the interannual variability of snow depth increases with the increases of altitude. Changes of the snow depth are consistent with the region in early and late winter. Trend of snow depth are not obvious in both early and late winter during 1961-2013. Snow depth increases significantly before 1996 and decreases insignificantly after 1996. The interannual variability of snow depth in early winter is likely to be dominated by interannual variations of both Arctic Oscillation (AO) and geopotential height near the QTP. In late winter, the interannual variability of snow depth is likely to be dominated by the geopotential height near the QTP and adjusted by interannual variations of AO. When snow depth over QTP is significantly positive, geopotential height anomaly from Arabian Sea to eastern QTP is negative, causing the animation of southern branch trough, westerly jet to the southern side of the plateau strengthens, increasing the water vapor flux in front of the trough. Meanwhile, the subtropical high moves northward and becomes strong, increasing the water vapor flux in its peripheral areas. Strengthening of the Lake Baikal ridge leads cold air southward and meet with warm and humid air from low-latitudes in the eastern plateau, which is conducive to more snowfall and more snow depth over the QTP.
Key words: Qinghai-Tibetan Plateau    snow cover distribution    temporal and spatial features    Arctic Oscillation    circulation anomaly
收稿日期: 2017-06-20 出版日期: 2018-08-22
:  P466  
基金资助: 国家自然科学基金项目(41771069);江苏省杰出自然科学基金项目(BK20140047);江苏高校优势学科建设工程资助项目(PAPD)
通讯作者: 游庆龙(1980-),男,湖南岳阳人,教授,从事青藏高原现代气候环境变化研究.E-mail:qinglong.you@nuist.edu.cn     E-mail: qinglong.you@nuist.edu.cn
作者简介: 保云涛(1994-),男,云南昆明人,硕士研究生,主要从事冰冻圈与青藏高原气候动力学研究.E-mail:yuntao_bao@163.com
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
保云涛
游庆龙
谢欣汝

引用本文:

保云涛, 游庆龙, 谢欣汝. 青藏高原积雪时空变化特征及年际异常成因[J]. 高原气象, 2018, 37(4): 899-910.

BAO Yuntao, YOU Qinglong, XIE Xinru. Spatial-temporal Variability of the Snow Depth over the Qinghai-Tibetan Plateau and the Cause of Its Interannual Variation. Plateau Meteorology, 2018, 37(4): 899-910.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2017.00099        http://www.gyqx.ac.cn/CN/Y2018/V37/I4/899

Pepin N, Bradley R S, Diaz H F, et al, 2015. Elevation-dependent warming in mountain regions of the world[J]. Nature Climate Change, 5(5):424-430. DOI:10.1038/nclimate2563.
Lü J M, Ju J H, Kim S J, et al, 2008. Arctic Oscillation and the autumn/winter snow depth over the Tibetan Plateau[J]. J Geophys Res:Atmospheres, 113(D14):762-770. DOI:10.1029/2007JD009567.
Kendall M G, 1975. Rank correlation methods[M]. London:Griffin.
Knkla G J, Angell J K, Korshover J, et al, 1997:New data on climate trends[J]. Nature, 270, 573-580.
Kobayashi S, Ota Y, Harada Y, et al, 2015. The JRA-55 reanalysis:General specifications and basic characteristics[J]. J Meteor Soc Japan, 93, 5-48. DOI:10.2151/jmsj. 2015-001.
Mann H B, 1945. Nonparametric tests against trend[J]. Econometrica, 13(3):245-259. DOI:10.2307/1907187.
Qiu J, 2008. The third pole[J]. Nature, 454(7203):393-396. DOI:10.1038/454393a.
Reiter E R, Gao D Y, 1982. Heating of the Tibet Plateau and movements of the South Asian High during spring[J]. Mon Wea Rev, 110(11):1694-1711. DOI:10.1175/1520-0493(1982)110<1694:HOTTPA>2.0. CO; 2.
Thompson D W J, Wallace J M, 1998. The Arctic oscillation signature in the wintertime geopotential height and temperature fields[J]. Geophys Res Lett, 25(9):1297-1300. DOI:10.1029/98GL00950.
Wu B Y, Wang J, 2002. Winter arctic oscillation, Siberian High and East Asian winter monsoon[J]. Geophys Res Lett, 29 (19):3-1-3-4. DOI:10.1029/2002GL015373.
Yasunari T, Kanehira A, Koike T, 2000. Interannual variability of snowcover over the Tibetan Plateau and its impact on Asian summer monsoon[C]. Proceedings of International Conference & Young Scientist Workshop on Asian Monsoon Environmental System and Global Change, November 15-17, Nanjing, China, 118.
You Q L, Kang S C, Ren G Y, et al, 2011. Observed changes in snow depth and number of snow days in the eastern and central Tibetan Plateau[J]. Climate Res, 46(2):171-183. DOI:10.3354/cr00985.
Yuan C, Tozuka T, Miyasaka T, et al, 2009. Respective influences of IOD and ENSO on the Tibetan snow cover in early winter[J]. Climate Dyn, 33(4):509-520. DOI:10.1007/s00382-008-0495-2.
Zhang Y, Li T, Wang B, 2004. Decadal change of the spring snow depth over the Tibetan Plateau:The associated circulation and influence on the East Asian Summer Monsoon[J]. J Climate, 17:2780-2793. DOI:10.1175/1520-0442(2004)017<2780:DCOTSS>2.0. CO; 2.
陈乾金, 高波, 张强, 2000. 青藏高原冬季雪盖异常与冬季风变异及其相互联系的物理诊断研究[J]. 大气科学, 24 (4):477-491. Chen Q J, Gao B, Zhang Q, 2000. Studies on relation of snow cover over the Tibetan Plateauin winter to the winter-summer monsoon change[J]. Chinese J Atmos Sci, 24(4):477-492. DOI:10.3878/j. issn. 1006-9895.2000.04.05.
董敏, 余建锐, 1997. 青藏高原春季积雪对大气环流影响的模拟研究[J]. 应用气象学报, 8(增刊):100-109. Dong M, Yu J R, 1997. A simulation study for the influences of Tibetan Plateau spring snow cover on the general circulation[J]. J Appl Meteor Sci, 8(Suppl):100-109.
段安民, 肖志祥, 吴国雄, 等, 2014. 青藏高原冬春积雪影响亚洲夏季风的研究进展[J]. 气象与环境科学, 37(3):94-101. Duan A M, Xiao Z X, Wu G X, et al, 2014. Study progress of the influence of the Tibetan Plateau winter and spring snow depth on Asian Summer Monsoon[J]. Meteor Environ Sci, 37(3):94-101. DOI:10.3969/j. issn. 1673-7148.2014.03.015.
范思睿, 范广洲, 董一平, 等, 2011. 青藏高原四季划分方法探讨[J]. 高原山地气象研究, 31(2):1-11. Fan S R, Fan G Z, Dong Y P, et al, 2011. Discussion on the methods of four seasons division in Tibetan Plateau[J]. Plateau Mountain Meteor Res, 31(2):1-11. DOI:10.3969/j. issn. 1674-2184.2011.02.001.
冯松, 汤懋苍, 王冬梅, 1998. 青藏高原是我国气候变化启动区的新证据[J]. 科学通报, 43(6):633-636. Feng S, Tang M C, Wang D M, 1998. New evidence of Tibetan Plateau is China's climate change promoter region[J]. Chinese Sci Bull, 43(6):633-636. DOI:10.1007/s00376-999-0032-1.
高荣, 韦志刚, 董文杰, 等, 2003.20世纪后期青藏高原积雪和冻土变化及其与气候变化的关系[J]. 高原气象, 22(2):191-196. Gao R, Wei Z G, Dong W J, et al, 2003. Variation of the snow and frozen soil over Qinghai-Xizang Plateau in the late twentieth century and their relations to climatic change[J]. Plateau Meteor, 22(2):191-196.
龚道溢, 王绍武, 2003. 近百年北极涛动对中国冬季气候的影响[J]. 地理学报, 58 (4):559-568. Gong D Y, Wang S W, 2003. Influence of Arctic Oscillation on winter climate over China[J]. Acta Geograp Sinica, 58(4):559-568. DOI:10.3321/j. issn:0375-5444.2003.04.010.
郭建平, 刘欢, 安林昌, 等, 2016.2001-2012年青藏高原积雪覆盖率变化及地形影响[J]. 高原气象, 35(1):24-33. Guo J P, Liu H, An L C, et al, 2016. Study on variation of snow cover and its orographic impact over Qinghai-Xizang Plateau during 2001-2012[J]. Plateau Meteor, 35(1):24-33. DOI:10.7522/j. issn. 1000-0534.2014.00140.
柯长青, 李培基, 1998. 用EOF方法研究青藏高原积雪深度分布与变化[J]. 冰川冻土, 20(1):64-67. Ke C Q, Li P J, 1998. Research on the characteristics of distribution and variation of snow cover on the Tibetan Plateau by using EOF analysis[J]. J Glaciology and Geocryology, 20(1):64-67. DOI:10.1088/0256-307X/16/9/027.
李小兰, 张飞民, 王澄海, 2012. 中国地区地面观测积雪深度和遥感雪深资料的对比分析[J]. 冰川冻土, 34(4):755-764. Li X L, Zhang F M, Wang C H, 2012. A comparative analysis of snow depth ground observation data and remote sensing snow depth data in China[J]. J Glaciology and Geocryology, 34(4):755-764.
梁潇云, 刘屹岷, 吴国雄, 2005. 青藏高原对亚洲季风爆发位置及强度的影响[J]. 气象学报, 63(5):799-805. Liang X Y, Liu Y M, Wu G X, 2005. Effect of Tibetan Plateau on the site of onset and intensity of the Asian Summer Monsoon[J]. Acta Meteor Sinica, 63(5):799-805. DOI:10.3321/j. issn:0577-6619.2005.05.023.
马丽娟, 2008. 近50年青藏高原积雪的时空变化特征及其与大气环流因子的关系[D]. 北京:中国科学院研究生院, 68-76. Ma L J, 2008. Temporal and spatial variation characteristics of snow cover over the Tibetan Plateau in recent 50 years and its relationship with atmospheric circulation factors[D]. Beijing:Graduate University of Chinese Academy of Sciences, 68-76.
施能, 2002. 气象科研与预报中的多元分析方法[M]. 北京:气象出版社, 17-18. Shi N, 2002. Multivariate analysis method in meteorological research and forecast[M]. Beijing:Meteorological Press, 17-18.
覃郑婕, 侯书贵, 王叶堂, 等, 2017. 青藏高原冬季积雪时空变化特征及其与北极涛动的关系[J]. 地理研究, 36(4):743-754. Qin Z J, Hou S G, Wang Y T, et al, 2017. Spatio-temporal variability of winter snow cover over the Tibetan Plateau and its relation to Arctic Oscillation[J]. Geograp Res, 36(4):743-754. DOI:10.11821/dlyj201704012.
王玉德, 2014. 基于ArcGIS的泰森多边形法计算区域平均雨量[J]. 吉林水利 (6):58-60. Wang Y D, 2014. Calculate regional rainfall using Voronoi diagram method based on ArcGIS[J]. Jilin Water Resources (6):58-60. DOI:10.3969/j. issn. 1009-2846.2014.06.017.
韦志刚, 黄荣辉, 陈文, 等, 2002. 青藏高原地面站积雪的空间分布和年代际变化特征[J]. 大气科学, 26(4):496-508. Wei Z G, Huang R H, Chen W, et al, 2002. Spatial distribution and variation characteristics of snow cover on the ground stations over the Tibetan Plateau[J]. Atmos Sci, 26(4):496-508. DOI:10.3878/j. issn. 1006-9895.2002.04.07.
徐小玉, 王亚非, 2016. ENSO 对青藏高原雪深的影响及持续性分析[J]. 高原气象, 35(1):1-12. Xu X Y, Wang Y F, 2016. Analysis of the influence of ENSO on snow depth over Qinghai-Xizang Plateau and its continuity[J]. Plateau Meteor, 35(1):1-12. DOI:10.7522/j. issn. 1000-0534.2014.00128.
张宏, 温永宁, 刘爱利, 等, 2006. 地理信息系统算法基础[M]. 北京:科学出版社, 172-184. Zhang H, Wen Y N, Liu A L, et al, 2006. Algorithm foundation of geographic information system[M]. Beijing:Science Press, 172-184.
吴国雄, 毛江玉, 段安民, 等, 2004. 青藏高原影响亚洲夏季气候研究的最新进展[J]. 气象学报, 62(5):528-540. Wu G X, Mao J Y, Duan A M, et al, 2004. Recent progress in the study on the impacts of Tibetan Plateau on Asian summer climate[J]. Acta Meteor Sinica, 62(5):528-540. DOI:10.3321/j. issn:0577-6619.2004.05.002.
吴绍洪, 尹云鹤, 郑度, 等, 2005. 青藏高原近30年气候变化趋势[J]. 地理学报, 60(1):3-11. Wu S H, Yin Y H, Zheng D, et al, 2005. Climate changes in the Tibetan Plateau during the last three decades[J]. Geograp Res, 60(1):3-11. DOI:10.3321/j. issn:0375-5444.2005.01.001.
杨利华, 2011. 缺失数据的处理方法研究及应用[D]. 景德镇:景德镇陶瓷学院, 14-15. Yang L H, 2011. Research and application of processing method for missing data[D]. Jingdezhen:Jingdezhen Ceramic Institute, 14-15.
张若楠, 张人禾, 左志燕, 2015. 中国冬季积雪变异及其与北极涛动的联系[J]. 大气科学, 39 (3):634-642. Zhang R N, Zhang R H, Zuo Z Y, 2015. Winter snow cover variability over China and its relation to Arctic Oscillation[J]. Atmos Sci, 39 (3):634-642. DOI:10.3878/j. issn. 1006-9895.1405.14170.
钟爱华, 严华生, 李跃清, 等, 2010. 青藏高原积雪异常与大气环流异常间关系分析[J]. 应用气象学报, 21(1):37-46. Zhong A H, Yan H S, Li Y Q, et al, 2010. Relationship between snow anomaly and atmospheric circulation anomaly over the Tibetan Plateau[J]. J Appl Meteor Sci, 21(1):37-46. DOI:10.3969/j. issn. 1001-7313.2010.01.005.
[1] 解晋, 余晔, 刘川, 葛骏. 青藏高原地表感热通量变化特征及其对气候变化的响应[J]. 高原气象, 2018, 37(1): 28-42.
[2] 陈丹, 周长艳, 熊光明, 邓梦雨. 近53年四川盆地夏季暴雨变化特征分析[J]. 高原气象, 2018, 37(1): 197-206.
[3] 徐安伦, 李育, 杨帆, 苏锦兰, 董保举, 孙绩华. 连年干旱背景下洱海流域降水的精细化特征[J]. 高原气象, 2017, 36(6): 1557-1566.
[4] 许霖, 姚蓉, 王晓雷, 欧小峰. 湖南省雷暴大风的时空分布和变化特征[J]. 高原气象, 2017, 36(4): 993-1000.
[5] 张英华, 李艳, 李德帅. 东亚经向波列对中国中东部盛夏气温的影响[J]. 高原气象, 2017, 36(4): 1010-1021.
[6] 杨玮, 徐敏, 周顺武, 罗连升. 江淮流域6-7月极端强降水事件时空变化及环流异常[J]. 高原气象, 2017, 36(3): 718-735.
[7] 周长艳, 邓梦雨, 齐冬梅. 青藏高原湿池的气候特征及其变化[J]. 高原气象, 2017, 36(2): 294-306.
[8] 马浩, 李正泉, 张力. 南半球环状模对中国气候的影响研究进展[J]. 高原气象, 2016, 35(6): 1595-1608.
[9] 张精华, 张万诚, 郑建萌, 马涛. 1970-2009年冬季昆明准静止锋的变化特征及其影响分析[J]. 高原气象, 2016, 35(5): 1298-1306.
[10] 周俊前, 刘新, 李伟平, 朱陵晶, 吴辉. 青藏高原春季地表感热异常对西北地区东部降水变化的影响[J]. 高原气象, 2016, 35(4): 845-853.
[11] 曾波, 谌芸, 李泽椿. 中国中东部地区夏季中尺度对流系统发生前环境场特征[J]. 高原气象, 2016, 35(2): 460-468.
[12] 张英华, 李艳, 李德帅, 尚可政, 郑凤魁. 中国东部夏季极端高温的空间分布特征及其环流型[J]. 高原气象, 2016, 35(2): 469-483.
[13] 李娟, 孙建华, 张元春, 沈新勇. 四川盆地西部与东部持续性暴雨过程的对比分析[J]. 高原气象, 2016, 35(1): 64-76.
[14] 王丹, 盛立芳, 黄少妮, 白光弼, 高红燕. 孟加拉湾感热净通量与陕西秋季降水的联系[J]. 高原气象, 2015, 34(6): 1658-1667.
[15] 贾亚俊, 胡轶佳, 钟中, 朱益民. 夏季西太平洋副热带高压指数的统计预测模型[J]. 高原气象, 2015, 34(5): 1369-1378.