Please wait a minute...
高级检索
高原气象  2018, Vol. 37 Issue (4): 981-993    DOI: 10.7522/j.issn.1000-0534.2017.00100
论文     
陕西一类“东高西低型”暴雨的基本特征
李博1,2, 王楠3, 姜明1, 华灯鑫1
1. 西安理工大学 机械与精密仪器工程学院, 陕西 西安 710048;
2. 中国气象科学研究院灾害天气国家重点实验室, 北京 100081;
3. 陕西省气象台, 陕西 西安 710016
The Features of a Type of West-Low and East-high Heavy Rainfall in Shaanxi Province
LI Bo1,2, WANG Nan3, JIANG Ming1, HUA Dengxin1
1. School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, Shaanxi, China;
2. State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China;
3. Shaanxi Meteorological Station, Xi'an 710016, Shaanxi, China
 全文: PDF 
摘要: 以NCEP再分析资料作为WRF模式初始场,加入常规观测资料、西安理工大学小型地面气象站观测资料和激光雷达雨前探测资料,对2015年4月初发生在陕西南部的一次暴雨过程(记为1504强降雨)开展高分辨中尺度模拟。在确保模拟资料质量可靠基础上,对模拟资料与观测资料开展综合诊断分析,研究了1504强降雨的基本特征。结果表明,这是一类"东高西低"型降雨过程,青藏高原东侧的暖低压与华北地区的冷高压共同导致暖湿气流与干冷空气在陕西南部交汇。饱和的大气是强降雨发生的有利条件(水汽含量达10.3 g·kg-1),而风速切变导致了强降雨的爆发,在此过程中诸要素与强降雨之间呈现出谷、峰相配的密切关联。"东高西低"形势的形成过程,体现的是降雨中心四周气压同时降低的特征,而非东部气压升高、西部气压降低的特征。在整个降压的过程中,西部气压降得更低、东部气压相对较高,由此构成"东高西低"的有利形势。最终,归纳了陕西这类"东高西低"型强降雨发生的概念模型。
关键词: 陕南东高西低暴雨概念模型    
Abstract: By using the Multiquadric method and the WRFDA (WRF data assimilation system) module, various data including the temperature data detected from the Raman Lidar in XAUT (Xi'an University of Technology), the mini-meteorological station observation data in XAUT and the convectional observation data were integrated into the initial field of WRF (Weather Research and Forecasting model). And a high resolution numerical simulation on a heavy rainfall case occurred in Shaanxi province in April 2015 was carried out. The quality control on the simulation data was conducted by using the quantitative check method and qualitative check method, and the results showed that the model had well copied the heavy rainfall case. Based on the simulation data and observation data, a new method named synthetically analysis and classifying diagnosis technique was used to study the features and formation process of the heavy rainfall case. It was a type of west-low and east-high rainfall. The warm low in the east of Qinghai-Tibetan Plateau and the cold high in North China together caused the collision between the warm-wet air and the cold-dry air in south Shaanxi. The air was near to be saturated with a water vapor mixing ratio of 10.3 g·kg-1, which was favorable of the rainfall, and the shear of wind speed triggered the heavy rainfall. Also, the features of the weather type of west-low and east-high, and the formation of the low and the high system were introduced respectively. The low located to the west of Shaanxi was closely related to the Qinghai-Tibetan Plateau. The air flowed over the Plateau and formed the weather type of the low-pressure to the east of the Plateau. On the other side, the high located to the east of Shaanxi was from the middle part of Inner Mongolia. The Mongolia High would move southeasterly to Hebei province and Beijing, and it would couple with the ridge of high pressure over the Eastern China. Thus, the weather type of the east-high was formed. Generally speaking, it was the closed high and closed low that together caused the heavy rainfall. In fact, the typical characteristic of the west-low and east-high was that the pressure around the rainfall center reduced together, instead of a situation of reducing-pressure in west part and increasing-pressure in east part. During the reducing-pressure process, the east station possessed a higher pressure than the west station. In the end, a type of conceptual model for the heavy rainfall in Shaanxi province was proposed according to this study.
Key words: South Shaanxi    west-low and east-high    heavy rainfall    conceptual model
收稿日期: 2017-09-01 出版日期: 2018-08-22
:  P445  
基金资助: 国家自然科学基金项目(41627807);中国气象科学研究院灾害天气国家重点实验室基金项目(2013LASW-B05);陕西省自然科学基础研究计划项目(2014JQ5176);陕西省教育厅自然科学专项项目(15JK1506)
作者简介: 李博(1979-)男,陕西大荔人,讲师,主要从事中尺度灾害天气机理方面的研究.E-mail:doctorlee@xaut.edu.cn
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李博
王楠
姜明
华灯鑫

引用本文:

李博, 王楠, 姜明, 华灯鑫. 陕西一类“东高西低型”暴雨的基本特征[J]. 高原气象, 2018, 37(4): 981-993.

LI Bo, WANG Nan, JIANG Ming, HUA Dengxin. The Features of a Type of West-Low and East-high Heavy Rainfall in Shaanxi Province. Plateau Meteorology, 2018, 37(4): 981-993.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2017.00100        http://www.gyqx.ac.cn/CN/Y2018/V37/I4/981

Dong H P, Zhao S X, Zeng Q C, 2007. A study of influencing systems and moisture budget in a heavy rainfall in low latitude plateau in China during early summer[J]. Adv Atmos Sci, 24(3):485-502.
Li B, Liu L P, Zhao S X, 2011. The possible mechanism of a type of vortex heavy rainfall during the pre-rainy season in South China[J]. Atmos Ocean Sci Lett, 4(5):247-252.
Nuss W A, Titley D W, 1994. Use of multiquadric interpolation for meteorological objective analysis[J]. Mon Wea Rew, 122:1611-1631.
Rap A, Ghosh S, Smith M H, 2009. Multiquadric interpolation methods for multicomponent aerosol-cloud parameterization[J]. J Atmos Sci, 66:105-115.
白晓平, 王式功, 赵璐, 等, 2016. 西北地区东部短时强降水概念模型[J]. 高原气象, 35(5):1248-1256. Bai X P, Wang S G, Zhao L, et al, 2016. Conceptual models of short-time heavy rainfall in the east of Northwest China[J]. Plateau Meteor, 35(5):1248-1256. DOI:10.7522/j. issn. 1000-0534.2015.00102.
毕宝贵, 刘月巍, 李泽椿, 2006. 秦岭大巴山地形对陕南强降水的影响研究[J]. 高原气象, 25(3):485-494. Bi B G, Liu Y W, Li Z C, 2006. Study on influence of the mechanical forcing of mesoscale topography on the extremely heavy rainfall in southern Shaanxi on 8-9 June 2002[J]. Plateau Meteor, 25(3):485-494.
程麟生, 冯伍虎, 2003. "98.7"暴雨β中尺度低涡生成发展结构演变:双向四重嵌套网格模拟[J]. 气象学报, 61(4):385-395. Cheng L S, Feng W H, 2003. Structural evolution of the genesis and development on meso-β vortex for the "98.7" heavy rainfall:Simulation of two ways with quartet nested grid[J]. Acta Meteor Sinica, 61(4):385-395.
程麟生, 彭新东, 马艳, 1995. "91.7"江淮暴雨低涡发展结构和演变的中尺度数值模拟[J]. 高原气象, 14(3):270-280. Cheng L S, Peng X D, Ma Y, 1995. Mesoscale numerical simulation of developing structure and evolution for vortex with heavy rain in Jiang-huai areas during 4-7 July 1991[J]. Plateau Meteor, 14(3):270-280.
方建刚, 陶建玲, 白爱娟, 等, 2006. 陕南近期两次特大暴雨天气成因的对比分析[J]. 灾害学, 21(2):69-75. Fang J G, Tao J L, Bai A J, et al, 2006. A comparative analysis on the cause of two heavy rainfall in southern Shaanxi[J]. J Catastrophology, 21(2):69-75.
高守亭, 赵思雄, 周晓平, 等, 2003. 次天气尺度及中尺度暴雨系统研究进展[J]. 大气科学, 27:618-624. Gap S T, Zhao S X, Zhou X P, et al, 2003. Progress of research on sub-synoptic scale and mesoscale torrential rain systems[J]. Chinese J Atmos Sci, 27:618-624.
何斌, 黄渊, 陈亮, 2014. Multiquadric方法在中尺度气象资料客观分析中的应用[J]. 高原气象, 33(1):171-178. He B, Huang Y, Chen L, 2014. Application of multiquadirc interpolation in objective analysis of mesoscale meteorological data[J]. Plateau Meteor, 33(1):171-178. DOI:10.7522/j. issn. 1000-0534.2012.00182.
黄士松, 李真光, 包澄澜, 等, 1986. 华南前汛期暴雨[M]. 广东:广东科技出版社, 244. Huang S S, Li Z G, Bao C L, et al, 1986. Heavy rainfall in the pre-flood season in south China[M]. Guangdong:Guangdong Science and Technology Press, 244.
李博, 刘黎平, 赵思雄, 等, 2013. 局地低矮地形对华南暴雨影响的数值试验[J]. 高原气象, 32(6):1638-1650. Li B, Liu L P, Zhao S X, et al, 2013. Numerical experiment of the effect of local low terrain on heavy rainstorm of south China[J]. Plateau Meteor, 32(6):1638-1650. DOI:10.7522/j. issn. 1000-0534.2012.00156.
李博, 刘黎平, 王改利, 等, 2017a. "0866"华南特大暴雨灾害的综合诊断研究[J]. 科学通报, 62:1-11. Li B, Liu L P, Wang G L, et al, 2017a. Study on the meso-β scale characteristics during the 0866 extremely heavy rainfall in south China by using SACDM[J]. China Sci Bull, 62:1-11.
李博, 华灯鑫, 周艳, 等, 2017b. 拉曼激光雷达测温的综合多级质量控制技术[J]. 光学学报, 37(4):0428003-1-13. Li B, Hua D X, Zhou Y, et al, 2017b. Synthetical multilevel quality analysis and control technique for Raman Lidar temperature detection[J]. Acta Opt Sinica, 37(4):0428003-1-13.
李博, 赵思雄, 2009.2007年入梅期由横槽与低涡切变引发淮河流域强降水的诊断研究[J]. 大气科学, 33(6):1148-1164. Li B, Zhao S X, 2009. A study of heavy rainfall resulting from transversal trough and shear line-low vortex in the Huaihe river during the Meiyu onset of 2007[J]. Chinese J Atmos Sci, 33(6):1148-1164.
李晓容, 张雪蓉, 濮梅娟, 2014. 梅汛期江淮切变线暴雨与非暴雨演变过程的合成对比分析研究[J]. 高原气象, 33(1):199-209. Li X R, Zhang X R, Pu M J, 2014. Composite analysis of the evolving of Yangtze river and Huaihe river shear line with heavy rain and without heavy rain in Meiyu period[J]. Plateau Meteor, 33(1):199-209. DOI:10.7522/j. issn. 1000-0534.2012.00174.
刘黎平, 阮征, 覃丹宇, 2004. 长江流域梅雨锋暴雨过程的中尺度结构个例分析[J]. 中国科学(地球科学), 34(12):1193-1201. Liu L P, Ruan Z, Qin D Y, 2004. Case study on the mesoscale structures of the heavy rainfall in Yangtze river[J]. Sci China (Earth Sci), 34(12):1193-1201.
刘勇, 王楠, 李平, 2006. 急流次级环流对陕南一次特大暴雨过程的作用[J]. 干旱气象, 24(4):25-29. Liu Y, Wang N, Li P, 2006. The effect of jet sub-circulation on a heavy rain occurred in southern Shaanxi[J]. Arid Meteor, 24(4):25-29.
刘泽军, 黄嘉宏, 林振敏, 2007. 广西中尺度数值模式格点产品检验系统[J]. 气象研究与应用, 28(4):34-36. Liu Z J, Huang J H, Lin Z M, 2007. Verifying system of Guangxi meso-scale numerical model grid predicting products[J]. J Meteor Res Appl, 28(4):34-36.
倪允琪, 周秀骥, 张人禾, 等, 2006. 我国南方暴雨的试验与研究[J]. 应用气象学报, 17(6):690-704. Ni Y Q, Zhou X J, Zhang R H, et al, 2006. Experiments and studies for heavy rainfall in southern China[J]. J Appl Meteor Sci, 17(6):690-704.
裘国庆, 1989. 数值天气预报标准化检验方法[J]. 气象, 15(9):48-50. Qiu G Q, 1989. The checking method for numerical weather forecast[J]. Meteor Mon, 15(9):48-50.
全国气象基本信息标准化技术委员会, 2010. 中华人民共和国气象行业标准:地面气象观测资料质量控制QX/T118-2010[S]. 北京:气象出版社, 1-8. National technical committee 346 on basic information of meteorology of standardization administration of China, 2010. The meteorological industry standards of China:Quality control for surface meteorological observation data QX/T118-2010[S]. Beijing:Meteorological Press, 1-8.
孙建华, 赵思雄, 傅慎明, 等, 2013.2012年7月21日北京特大暴雨的多尺度特征[J]. 大气科学, 37(3):705-718. Sun J H, Zhao S X, Fu S M, et al, 2013. Multi-scale characteristics of record heavy rainfall over Beijing area on Junly 21 2012[J]. Chinese J Atmos Sci, 37(3):705-718.
孙伟, 2002. 陕南一次突发性暴雨天气过程分析[J]. 陕西气象, (5):1-4. Sun W, 2002. Analysis on a sudden heavy rainfall in south Shaanxi[J]. Shaan Xi Meteor, (5):1-4.
汤鹏宇, 何宏让, 阳向荣, 等, 2015. 北京"7.21"特大暴雨中的干侵入分析研究[J]. 高原气象, 34(1):1-10. Tang P Y, He H R, Yang X R, et al, 2015. Research and analysis of dry intrusion during Beijing ‘7.21’ extreme torrential rain[J]. Plateau Meteor, 34(1):1-10. DOI:10.7522/j. issn. 1000-0534.2013.00128.
王宝鉴, 孔祥伟, 付朝, 等, 2016. 甘肃陇东南一次大暴雨的中尺度特征分析[J]. 高原气象, 35(6):1551-1564. Wang B J, Kong X W, Fu Z, et al, 2016. Analysis on mesoscale characteristics of a rainstorm process in southeast Gansu[J], Plateau Meteor, 35(6):1551-1564. DOI:10.7522/j. issn. 1000-0534.2015.00114.
王东海, 夏茹娣, 刘英, 2011.2008年华南前汛期致洪暴雨特征及其对比分析[J]. 气象学报, 69(1):137-148. Wang D H, Xia R D, Liu Y, 2011. A preliminary study of the flood-causing rainstorm during the first rainy season in south China in 2008[J]. Acta Meteor Sinica, 69(1):137-148.
王晓君, 马浩, 2011. 新一代中尺度预报模式(WRF)国内应用进展[J]. 地球科学进展, 26(11):191-199. Wang X J, Ma H, 2011. Progress of application of the weather research and forecast model in China[J]. Adv Earth Sci, 26(11):191-199.
王莹, 苗峻峰, 苏涛, 2018. 海南岛地形对局地海风降水强度和分布影响的数值模拟[J]. 高原气象, 37(1):207-222. Wang Y, Miao J F, Su T, 2018. A numerical study of impact of topography on intensity and pattern of sea breeze precipitation over the Hainan Island[J]. Plateau Meteor, 37(1):207-222. DOI:10.7522/j. issn. 1000-0534.2016.00135.
姚秀萍, 孙建元, 马嘉理, 2017. 江淮切变线研究的回顾与展望[J]. 高原气象, 36(4):1138-1151. Yao X P, Sun J H, Ma J L, 2017. Advances on research of Yangtze_Huaihe shear line[J]. Plateau Meteor, 36(4):1138-1151. DOI:10.7522/j. issn. 1000-0534.2017.00015.
余志豪, 陆汉城, 1988. 梅雨锋暴雨的中尺度雨带和雨峰团[J]. 中国科学B, 9:1002-1010. Yu Z H, Lu H C, 1988. The mesoscale rain belt and rainy clusters causing heavy rainfall near Meiyu front[J]. Sci China Ser B, 9:1002-1010.
张庆红, 刘启汉, 王洪庆, 等, 2000. 华南梅雨锋上中尺度对流系统的数值模拟[J]. 科学通报, 45(18):1988-1992. Zhang Q H, Liu Q H, Wang H Q, et al, 2000. Simulation on the mesoscale convective system near Meiyu front in south China[J]. China Sci Bull, 45(18):1988-1992.
张文龙, 崔晓鹏, 2012. 近50a华北暴雨研究主要进展[J]. 暴雨灾害, 31(4):384-391. Zhang W L, Cui X P, 2012. Main progress of torrential rain researches in north China during the past 50 years[J]. Torrential Rain Disasters, 31(4):384-391.
张翔科, 2004. 陕南西部一次区域性暴雨天气过程分析[J]. 陕西气象, (2):24-27. Zhang X K, 2004. Analysis on a region heavy rainfall in the west of south Shaanxi[J]. Shaanxi Meteor, (2):24-27.
张永涛, 陈耀登, 2014.2012年FNL气温、气压和地面温度资料与河南省实况观测要素的误差对比分析[J]. 气象与环境科学, 37(1):93-97. Zhang Y T, Chen Y D, 2014. Error comparison analysis between FNL data and observation data of air temperature, air pressure and ground temperature in Henan province in 2012[J]. Meteor Environ Sci, 37(1):93-97.
赵强, 程路, 孙军鹏, 2008. 陕南一次暴雨天气过程的诊断分析[J]. 陕西气象, (5):17-20. Zhao Q, Cheng L, Sun J P, 2008. Analysis of a heavy rainfall in south Shaanxi[J]. Shaanxi Meteor, (5):17-20.
赵世发, 王俊, 周军元, 等, 2001. 陕南两次罕见的特大暴雨对比分析[J]. 气象, 27(10):28-32. Zhao S F, Wang J, Zhou J Y, et al, 2001. Contrast analysis between two rare torrential rains over the south of Shaanxi province[J]. Meteor Mon, 27(10):28-32.
赵宇, 崔晓鹏, 高守亭, 2011. 引发华北特大暴雨过程的中尺度对流系统结构特征研究[J]. 大气科学, 35(5):945-962. Zhao Y, Cui X P, Gao S T, 2011. A study of structure of mesoscale systems producing a heavy rainfall event in North China[J]. Chinese J Atmos Sci, 35(5):945-962.
中华人民共和国国家标准, 2012. 降雨量等级GB/T 28592-2012[S]. 北京:中国标准出版社, 1-6. The national standards of China, 2012. The levels of precipation GB/T 28592-2012[S]. Beijing:China Standards Press, 1-6.
周青, 赵凤生, 高文华, 2008. NCEP/NCAR逐时分析与中国实测地表温度和地面气温对比分析[J]. 气象, 34(2):83-91. Zhou Q, Zhao F S, Gao W H, 2008. Comparison and analysis between NCEP/NCAR every-6-hours analysis land surface and air temperature and 753 Chinese stations observation in 2005[J]. Meteor Mon, 34(2):83-91.
周秀骥, 薛纪善, 陶祖钰, 等, 2003. ‘98’华南暴雨科学试验研究[M]. 北京:气象出版社, 220. Zhou X J, Xue J S, Tao Z Y, et al, 2003. Experiments and studies on the heavy rainfall in south China in 1998[M]. Beijing:China Meterological Press, 220.
周玉淑, 高守亭, 邓国, 2005. 江淮流域 2003年强梅汛期的水汽输送特征分析[J]. 大气科学, 29(2):195-204. Zhou Y S, Gao S T, Deng G, 2005. A diagnostic study of water vapor transport and budget during heavy precipitation over the Changjiang river and the Huaihe river basins in 2003[J]. Chinese J Atmos Sci, 29(2):195-204.
[1] 刘自牧, 李国平, 张博. 高原涡与高原切变线伴随出现的统计特征[J]. 高原气象, 2018, 37(5): 1233-1240.
[2] 毛东雷, 蔡富艳, 赵枫, 雷加强, 来风兵, 薛杰. 塔克拉玛干沙漠南缘近4年沙尘天气下的气象要素相关性分析[J]. 高原气象, 2018, 37(4): 1120-1128.
[3] 姚秀萍, 孙建元, 马嘉理. 江淮切变线研究的回顾与展望[J]. 高原气象, 2017, 36(4): 1138-1151.
[4] 张云惠, 于碧馨, 谭艳梅, 于艳. 2011年两次中亚低涡影响南疆西部降雪机制分析[J]. 高原气象, 2016, 35(5): 1307-1316.
[5] 陈豫英, 陈楠, 谭志强, 郑晓辉. 热力作用对宁夏不同强度沙尘天气的影响[J]. 高原气象, 2015, 34(6): 1668-1676.
[6] 李雪, 刘晓东. 中国北方春季沙尘暴活动与高空西风急流变化的联系[J]. 高原气象, 2015, 34(5): 1292-1300.
[7] 王晓玲, 王海燕, 王珊珊, 吴翠红, 张萍萍. 边界层准静止干线触发的中尺度暴雨机理分析[J]. 高原气象, 2015, 34(5): 1310-1322.
[8] 艾永智, 杨传荣, 李蕊. 玉溪一次强对流天气的中尺度特征分析[J]. 高原气象, 2015, 34(5): 1391-1401.
[9] 张琳娜, 郭锐, 何娜, 贺赟, 吴剑坤. “7·21”北京特大暴雨过程龙卷形成可能性探究[J]. 高原气象, 2015, 34(4): 1074-1083.
[10] 张芹, 丁治英, 杨成芳, 王世杰, 韩晓. 山东一次历史极端降雪过程的诊断分析[J]. 高原气象, 2015, 34(4): 1131-1138.
[11] 梁军, 李英, 张胜军, 张彩凤, 刘晓初. 辽东半岛热带气旋暴雨的中尺度结构及复杂地形的影响[J]. , 2014, 33(4): 1154-1163.
[12] 王彦, 高守亭, 梁钊明. 渤海湾海风锋触发雷暴的观测和模拟分析[J]. 高原气象, 2014, 33(3): 848-854.
[13] 孙国武, 汤绪, 李江萍. 夏季风北边缘与沙尘暴的研究[J]. 高原气象, 2008, 27(5): 1088-1093.
[14] 邱玉珺, 牛生杰, 邹学勇, 程宏. 沙尘天气频率与相关气象因子的关系[J]. 高原气象, 2008, 27(3): 637-643.
[15] 周万福, 张国庆, 肖红斌, 张加昆. 2005年雨季"三江源"地区对流云的特征分析[J]. 高原气象, 2008, 27(3): 695-700.
img

QQ群聊

img

官方微信