Please wait a minute...
高级检索
高原气象  2018, Vol. 37 Issue (4): 936-945    DOI: 10.7522/j.issn.1000-0534.2018.00001
论文     
三江源腹地玉树地区动态融雪过程及其与气温关系分析
张娟1,2, 徐维新3, 王力1, 周华坤4
1. 青海省气象科学研究所, 青海 西宁 810001;
2. 青海省防灾减灾重点实验室, 青海 西宁 810001;
3. 成都信息工程大学, 四川 成都 610225;
4. 中国科学院西北高原生物研究所, 青海省寒区恢复生态学重点实验室, 青海 西宁 810008
Dynamic Snow Melting Process and Its Relationship with Air Temperature in the Hinterland of Sanjiangyuan Region in Qinghai-Tibetan Plateau
ZHANG Juan1,2, XU Weixin3, WANG Li1, ZHOU Huakun4
1. Meteorological Instutute of Qinghai Province, Xining 810001, Qinghai, China;
2. Laboratory of Disaster Prevention and Reduction of Qinghai Province, Xining 810001, Qinghai, China;
3. Chengdu University of Information Technology, Chengdu 610225, Sichuan, China;
4. laboratory of cold recovery ecology of Qinghai province, Northwest Plateau Institute of biology, Chinese Academy of Sciences, Xining 810001, Qinghai, China
 全文: PDF 
摘要: 利用位于三江源腹地的玉树州隆宝自然保护区野外雪深自动观测站2013/2014年冬季每30 min积雪深度与同步气温数据,对发生在2014年2月的较大降雪过程的动态融雪过程及其同步气温进行了研究分析。结果表明,玉树隆宝地区融雪过程总体表现为"先慢后快"的变化特征,积雪在10 cm以上时融雪过程相对缓慢,在10 cm以下时,积雪加速消融,积雪越薄,融雪越快;在融雪期内,雪深快速下降分别发生在10:00(北京时,下同)-11:00与14:00-15:30;气温与雪深变化关系紧密,09:00以前,雪深的下降与气温的关系不明显,09:00以后气温开始对雪深的变化产生比较明显地影响,这种相关性在10:00后明显增强,热量条件对积雪消融的影响自10:30一直持续到18:00;相对而言,13:00-14:00气温对日积雪消融的贡献最大。超前滞后关系分析表明,融雪期之前240 min之内的气温都将显著影响到积雪雪深的变化;玉树隆宝地区积雪在气温-12℃时仍有积雪深度下降的现象发生,正变温对积雪消融更有利。
关键词: 三江源积雪融雪气温    
Abstract: The data of 30 mins snow depth and air temperature in winter half year during 2013 to 2014 derived from the field automatic observing site in the hinterland of the Sanjiangyuan Region in Qinghai-Tibetan Plateau were used in this study. We mainly analyzed the relationship between snow depth and air temperature in the time level of half hour based on one long snow melting period with 16 days in this area from 21 February to 1 March in 2014. The melting process of snow in this area is characterized by slow first and fast later. It was found that snow melting is slow while snow depth above on 10 cm, but it was changed obviously when snow depth is less than 10 cm and snow depth melting will more remarkable along with more low snow depth. During the snowmelt period, the snow depth drops rapidly at 10:00 (Beijing time, the same as after) -11:00 and 14:00-15:30. In this area, the relationship between snow depth and air temperature show a weak correlation before 9:00, the correlation becomes obvious after 9:00 and it is gradually stronger after 10:00 until 18:00. The time from 13:00 to 14:00 is a main period contribute to snow melt in a day. The advance lag analysis showed that the temperature within 240 mins before the melting period would significantly influence the change of snow depth. We found that the decrease of snow depth can be observed even though at -12℃ in this area.
Key words: Sanjiangyuan    snow    snow melting    temperature
收稿日期: 2017-08-31 出版日期: 2018-08-22
:  P426.63+3  
基金资助: 青海省科技厅重点研发与转化项目(2017-SF-131);国家公益性行业(气象)科研专项(GYHY201306054);国家自然科学基金项目(31560671);青海省创新平台建设专项(2017-ZJ-Y20)
通讯作者: 徐维新(1973-),男,青海乐都人,高级工程师,主要从事高寒草地生态环境监测评估研究.E-mail:weixin.xu@163.com     E-mail: weixin.xu@163.com
作者简介: 张娟(1979-),女,河北保定人,高级工程师,主要从事气候变化及其影响与积雪观测.E-mail:7845944@qq.com
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张娟
徐维新
王力
周华坤

引用本文:

张娟, 徐维新, 王力, 周华坤. 三江源腹地玉树地区动态融雪过程及其与气温关系分析[J]. 高原气象, 2018, 37(4): 936-945.

ZHANG Juan, XU Weixin, WANG Li, ZHOU Huakun. Dynamic Snow Melting Process and Its Relationship with Air Temperature in the Hinterland of Sanjiangyuan Region in Qinghai-Tibetan Plateau. Plateau Meteorology, 2018, 37(4): 936-945.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2018.00001        http://www.gyqx.ac.cn/CN/Y2018/V37/I4/936

Amar N P, Roop P, 2016. Design and implementation of a novel automated snow depth sensing system[J]. Journal of Sensors and Instrumentation, 4(1):1-18. DOI:10.7726/jsi. 2016.1001.
Brazenec W A, 2005. Evaluation of ultrasonic snow depth sensors for automated surface observing systems(ASOS)[D]. department of forest, rangeland, and watershed steward. M. S. Thesis, Colorado State University, Fort Collins, CO, 134.
Goodison B E, Metcalfe J R, Wilson R A, et al, 1988. The Canadian automatic snow depth sensor:A performance update[C]//Atmos Environ Serv, 178-181.
Li H, Tang Z, Wang J, et al, 2014. Synthesis method for simulating snow distribution utilizing remotely sensed data for the Tibetan Plateau[J]. J Appl Remote Sens, 8(1):084696-1-16.
Li Z, Liu J, Tian B, 2012. Spatial and temporal series analysis of snow cover extent and snow water equivalent for satellite passive microwave data in the northern hemisphere (1978-2010)[C]//IEEE Int Geosci Remote Sens Sym, 4871-4874.
Liu J, Li Z, 2013. Temporal series analysis of snow water equivalent of satellite passive microwave data in northern seasonal snow classes (1978-2010)[C]//IEEE Int Geosci Remote Sens Sym, 3606-3609.
Ryan W A, Doesken N J, Fassnacht S R, 2008. Evaluation of ultra-sonic snow depth sensors for us snow measurements[J]. J Atmos Ocean Technol, 25(5):667-684.
Tang Z, Wang J, Li H, 2013. Monitoring snow cover changes and their relationships with temperature over the Tibetan Plateau using MODIS data[C]//IEEE Int Geosci Remote Sens Sym, 1178-1181.
蔡迪花, 郭铌, 王兴, 等, 2009. 基于MODIS的祁连山区积雪时空变化特征[J]. 冰川冻土, 31(6):1028-1036. Cai D H, Guo N, Wang X, et al, 2009. The spatial and temporal variations of snow cover over the Qilian Mountains based on MODIS Data[J]. Journal of Glaciology and Geocryology, 31(6):1028-1036.
除多, 边巴次仁, 扎珠, 等, 2018, SR-50A超声雪深仪在西藏高原的适用性研究[J]. 高原气象, 37(2):382-393. Chu D, Bianba C R, Zha Z, et al, 2018. Applicability study of SR-50A ultrasonic snow depth sensor for snow measurement in Tibentan Plateau[J]. Plateau Meteor, 37(2):382-393. DOI:10.7522/j. issn. 1000-0534.2014.00037.
郭建平, 刘欢, 安林昌, 等, 2016.2001-2012年青藏高原积雪覆盖率变化及地形影响[J]. 高原气象, 35(1):24-33. Guo J P, Liu H, An L C, et al, 2016. Study on variation of snow cover and its orographic impact over Qinghai-Xizang Plateau during 2001-2012[J]. Plateau Meteor, 35(1):24-33. DOI:10.7522/j. issn. 1000-0534.2014.00140.
郭玲鹏, 李兰海, 徐俊荣, 等, 2012. 天山巩乃斯河谷积雪深度及季节冻土温度对气温变化的响应[J]. 资源科学, 34(4):636-643. Guo L P, Li L H, Xu J R, et al, 2012. Responses of snow depth and seasonal frozen ground temperature to enhanced air temperature in Kunges valley Tianshan Mountains[J]. Res Sci, 34(4):636-643.
郝晓华, 王建, 车涛, 2009. 祁连山区冰沟流域积雪分布特征及其属性观测分析[J]. 冰川冻土, 31(2):284-292. Hao X H, Wang J, Che T, 2009. The spatial distribution and properties of snow cover in Binggou Watershed, Qilian Mountains:Measurement and analysis[J]. Journal of Glaciology and Geocryology, 31(2):284-292.
胡豪然, 梁玲, 2013. 近50年青藏高原东部冬季积雪的时空变化特征[J]. 地理学报, 68(11):1493-1503. Hu H R, Liang L, 2013. Spatial and temporal variations of winter snow over east of Qinghai-Tibet Plateau in the last 50 years[J]. Institute of Plateau Meter, 68(11):1493-1503.
李栋梁, 王春学, 2011. 积雪分布及其对中国气候影响的研究进展[J]. 大气科学学报, 34(5):627-636. Li D L, Wang C X, 2011. Research progress of snow cover and its influence on China Climate[J]. Trans Atmos Sci, 34(5):627-636.
李小兰, 张飞民, 王澄海, 2012. 中国地区地面观测积雪深度和遥感雪深资料的对比分析[J]. 冰川冻土, 34(4):755-764. Li X L, Zhang F M, Wang C H, 2012. Comparison and analysis of snow depth over China, observed and derived from remote sensing[J]. Journal of Glaciology and Geocryology, 34(4):755-764.
时兴合, 李凤霞, 扎西才让, 2006.1961-2004年青海积雪及雪灾变化[J]. 应用气象学报, 17(3):376-382. Shi X H, Li F X, Zhaxi C R, et al, 2006. The variation of snow-cover and snow disaster in Qinghai during 1961-2004[J]. J Appl Meteor Sci, 17(3):376-382.
王顺久, 2017. 青藏高原积雪变化及其对中国水资源系统影响研究进展[J]. 高原气象, 36(5):1153-1164. Wang S J, 2017. Progresses in variability of snow cover over the Qinghm-Tibetan Plateau and its impact on water resources in China[J]. Plateau Meteor, 36(5):1153-1164. DOI:10.7522/j. issn. 1000-0534.2016.00117.
魏永亮, 韩方昕, 解文璇, 2017. 玉树地区1961-2015 年降水变化特征分析[J]. 中国农学通报, 33(4):124-130. Wei Y L, Han F X, Xie W X, 2017. Precipitation variation characteristics in Yushu in 1960-2015[J]. Chinese Agricultural Science Bulletin, 33(4):124-130.
徐兴奎, 2011.1970-2000年中国降雪量变化和区域性分布特征[J]. 冰川冻土, 33(3):497-503. Xu X K, 2011. Spatiotemporal variation and regional distribution characteristics of snowfall in China from 1970 to 2000[J]. Journal of Glaciology and Geocryology, 33(3):497-503.
杨志刚, 达娃, 除多, 等, 2017. 近15a青藏高原积雪覆盖时空变化分析[J]. 遥感技术与应用, 32(1):27-36. Yang Z G, Da W, Chu D, et al, 2017. Spationtemporal variations of snow cover on the Tibetan Plateau over the Last 15 years[J]. Remote Sens Technol Appl, 32(1):27-36.
郑照军, 刘玉洁, 张炳川, 2004. 中国地区冬季积雪遥感监测方法改进[J]. 应用气象学报, 15(增刊):75-84. Zhen Z J, Liu Y J, Zhang B C, 2004. Improved remote sense monitoring on snow cover of China in Winter[J]. J Appl Meteor Sci, 15(Suppl):75-84.
中国气象局, 2003. 地面气象观测规范[Z]. 北京:气象出版社. China Meteorological Administration, 2003. Specifications for surface meteorological observation[Z]. Beijing:Meteorological Press.
周利敏, 陈海山, 彭丽霞, 等, 2016. 青藏高原冬春雪深年代际变化与南亚高压可能联系[J]. 高原气象, 35(1):13-23. Zhou L M, Chen H S, Peng L X, et al, 2016. Possible connection between interdecadal variations of snow depth in winter and spring over Qinghai-Xizang Plateau and South Asia High in summer[J]. Plateau Meteor, 35(1):13-23. DOI:10.7522/j. issn. 1000-0534.2014.00152.
周扬, 徐维新, 白爱娟, 等, 2017a. 青藏高原沱沱河地区动态融雪过程及其与气温关系分析[J]. 高原气象, 36(1):24-32. Zhou Y, Xu W X, Bai A J, et al, 2017a. Dynamic snow-melting process and its relationship with air temperature in Tuotuohe. Qinghai-Xizang Plateau[J]. Plateau Meteor, 36(1):24-32. DOI:10.7522/j. issn. 1000-0534.2016.00013.
周扬, 徐维新, 张娟, 等, 2017b. 2013-2015年青藏高原玛多地区两次动态融雪过程及其与气温关系对比分析[J]. 自然资源学报, 32(1):101-113. Zhou Y, Xu W X, Zhang J, et al, 2017b. A comparative analysis of the two dynamic snow-melting process and their relationship with air temperature during 2013-2015 in the area of Maduo, Tibetan Plateau[J]. Journal of Natural Resources, 32(1):101-113.
[1] 周扬, 徐维新, 白爱娟, 张娟, 刘晓敬, 欧阳建芳. 青藏高原沱沱河地区动态融雪过程及其与气温关系分析[J]. 高原气象, 2017, 36(1): 24-32.
[2] 陶健红, 张新荣, 张铁军, 吉恵敏. WRF模式对一次河西暴雪的数值模拟分析[J]. 高原气象, 2008, 27(1): 68-75.
img

QQ群聊

img

官方微信