Please wait a minute...
高原气象  2018, Vol. 37 Issue (4): 911-922    DOI: 10.7522/j.issn.1000-0534.2018.00002
郭凤霞, 王曼霏, 黄兆楚, 李扬, 穆奕君, 廉纯皓, 曾凡辉
南京信息工程大学气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室/气象灾害预报预警与评估协同创新中心/中国气象局气溶胶与云降水重点开放实验室, 江苏 南京 210044
The Model Analysis of Lightning Charge Structure Characters and Attributions over Qinghai-Tibetan Plateau
GUO Fengxia, WANG Manfei, HUANG Zhaochu, LI Yang, MU Yijun, LIAN Chunhao, ZENG Fanhui
Key Laboratory of Meteorological Disaster, Ministry of Education(KLME)/Joint International Research Laboratory of Climate and Environment Change(ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters(CIC-FEMD)/Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China
 全文: PDF(15022 KB)   HTML ( 0)
摘要: 利用三维雷暴云动力-电耦合数值模式,通过对青藏高原地区2003年8月13日一次雷暴过程进行模拟,分析了高原雷暴的电荷结构特征并从微物理角度讨论了其主要形成原因。结果表明,高原雷暴以三极性结构为主,在消散阶段电荷结构转变为偶极性,结构整体电荷密度较小,主正电荷区与主负电荷区深厚,下部次正电荷区范围较大,持续时间较长。其中三极性结构主要是由于云内冰相粒子通过非感应起电机制作用形成;后期偶极性构是由霰粒子下落固态降水的增强导致。云内暖云区厚度较小,混合相区域内有效液态水含量较高,对流层顶较低,导致冰晶、雪所在的高度更低,与霰、雹这样的大粒子重合的区域更大,形成了下部范围较大持续时间较长的正电荷区。
关键词: 青藏高原电荷结构水凝物    
Abstract: To further recognize the particularity of thunderstorm over Qinghai-Tibetan Plateau (QTP), this paper has analyzed the primary attribution of charge distribution, and also predicted the microphysics and electrification occurring on 13 August 2003 in QTP, using a three-dimensional dynamics-electrification coupled model. The charging parameterization included both the graupel/hail-cloud/ice inductive charging mechanism and the graupel/hail-ice non-inductive charging mechanism. The charging processes between other large and small particles are small, so they were ignored in this study. The results indicated that the characteristics of thunderstorms in QTP are unique. The life period of the thouderstorm is short, and the positive cloud-to-ground flashes occur frequently. The updraft and downdraft are weaker, and solid precipitation is more than liquid precipitation. Cloud top of thunderstorms are low and warm cloud area is small. Meanwhile, the height of solid small particles (ice crystals, snow) is low. The solid large particles (gravel, hail) distributed widely and mainly grounded. The thunderstorms in QTP displays a vertical tripole charge structure, then transforms into dipole distribution during dissipate stage. total charge density shrinks, while the peaks of charge center is higher. The main positive charge center is located at 7~9 km (-40~-30℃), and the main negative charge center is located at 4~7 km (-10~0℃). The lower positive charge center is located at 2~3.5 km. And all the charge areas are uplifted with convection. The lower positive charge center occupies widely and it lasts a long time. The tripole distribution is referred to as non-inductive collisional separation between ice-phase microphysics. The main positive charge center is mainly formed by ice crystals, the main negative charge center and lower positive charge center are mainly formed by snow and graupel. The weakening of the non-inductive collisional charging mechanism between graupel and ice makes the lower positive charge center dissipate. The dipole one results from the precipitation of graupel particles. Because of the smaller warm cloud thickness, high effective liquid water content in mixed area, and lower the tropical tropopause, the overlap area of graupel and hail distribution is larger, so the lower positive charge is wide and last for a long time.
Key words: Qinghai-Tibetan Plateau    charge structure    precipitation
收稿日期: 2017-09-12 出版日期: 2019-02-26
:  P446  
基金资助: 国家重点研发计划资助(2017YFC1501503);中国气象科学研究院基本科研业务费专项(2016Z002);国家自然科学基金项目(91537209,91644224)
作者简介: 郭凤霞(1977-),女,甘肃平凉人,教授,主要从事雷暴电学研究
E-mail Alert


郭凤霞, 王曼霏, 黄兆楚, 李扬, 穆奕君, 廉纯皓, 曾凡辉. 青藏高原雷暴电荷结构特征及成因的数值模拟研究[J]. 高原气象, 2018, 37(4): 911-922.

GUO Fengxia, WANG Manfei, HUANG Zhaochu, LI Yang, MU Yijun, LIAN Chunhao, ZENG Fanhui. The Model Analysis of Lightning Charge Structure Characters and Attributions over Qinghai-Tibetan Plateau. Plateau Meteorology, 2018, 37(4): 911-922.


Carey L D, Murphy M J, McCormick T L, et al, 2005. Lightning location relative to storm structure in a leading-line, trailing-stratiformmesoscale convective system[J]. J Geophys Res, 110:1-23.
Lang, T J, Rutledge S A, 2002. Relationships between convective storm kinematics, precipitation, and lightning[J]. Mon Wea Rev, 130:2492-2506.
Liu X S, Ye Z X, Shao X M, et al, 1989. Intracloud lightning discharges in the lower part of thundercloud[J]. Acta Meteor Sinica, (2):212-219.
MacGorman D R, Burgess D W, 1994. Positive cloud-to-ground lightning in tornadic storms and hailstorms[J]. Mon Wea Rev, 122:1671-1697.
MacGorman D R, Rust W D, Krehbiel P, et al, 2005. The electrical structure of two supercell storms during STEPS[J]. Mon Wea Rev, 133(9):2583-2607.
Mansell E R, Macgorman D R, Ziegler C L, et al, 2005. Charge structure and lightning sensitivity in a simulated multicell thunderstorm[J]. J Geophys Res:Atmospheres, 110(D12):1545-1555.
Mansell E R, Macgorman D R, Ziegler C L, et al, 2002. Simulated three-dimensional branched lightning in a numerical thunderstorm model[J]. J Geophys Res, 107(D9):4075.
Marshall T C, McCarthy M P, Rust W D, 1995. Electric field magnitudes and lightning initiation in thunderstorms[J]. J Geophys Res:Atmospheres (1984-2012), 100(D4):7097-7103.
Qie X, Yu Y, Wang D, et al, 2002. Characteristics of cloud-to-ground lightning in Chinese Inland Plateau[J]. J Meteor Soc Japan, 80(4):745-754.
Qie X, Zhang T, Chen C, et al, 2005. The lower positive charge center and its effect on lightning discharges on the Tibetan Plateau[J]. Geophys Res Lett, 32(5):215-236.
Qie X, Zhang T, Zhang G, et al, 2009. Electrical characteristics of thunderstorms in different plateau regions of China[J]. Atmos Res, 91(2):244-249.
Raymond D J, Solomon R, Blyth A M, 2010. Mass fluxes in New Mexico mountain thunderstorms from radar and aircraft measurements[J]. Quart J Roy Meteor Soc, 117(499):587-621.
Saunders C P R, KeithW D, Mitzeva R P, 1991. The effect of liquid water on thunderstorm charging[J]. J Geophys Res, 96:11007-11017.
Stolzenburg M, Rust W D, Smull B F, et al, 1998a. Electrical structure in thunderstorm convective regions:2. Isolated storms[J]. J Geophys Res Atmos, 103(D12):14079-14096.
Stolzenburg M, Rust W D, Smull B F, et al, 1998b. Electrical structure in thunderstorm convective regions:3. Synthesis[J]. J Geophys Res Atmos, 103(D12):14097-14108.
Takahashi T, 1984. Thunderstorm electrification-A numerical study[J]. J Atmos Sci, 41:2541-2558.
Ziegler C L, Macgorman D R, Dye J E, et al. 1991. A model evaluation of noninductive graupel-ice charging in the early electrification of a mountain thunderstorm[J]. J Geophys Res, 961(D7):12833-12855.
栾澜, 孟宪红, 吕世华, 等, 2017. 青藏高原一次对流降水模拟中边界层参数化和云微物理的影响研究[J]. 高原气象, 36(2):283-293. Luan L, Meng X H, Lü S H, et al, 2017. Impacts of microphysics and PBL physics parameterization on a convective precipitation over the Qinghai-Tibetan Plateau[J]. Plateau Meteor, 36(2):283-293. DOI:10.7522/j. issn. 1000-0534.2016.00086.
郭凤霞, 王昊亮, 孙京, 等, 2015a. 积云模式下三维闪电分形结构的数值模拟[J]. 高原气象, 34(2):534-545. Guo F X, Wang H L, Sun J, et al, 2015. Simnlation of three-dimensional fractal structure of lightning in a thunderstorm model[J]. Plateau Meteor, 34(2):534-545. DOI:10.7522/j. issn. 1000-0534.2013.00193.
郭凤霞, 张义军, 郄秀书, 等, 2003. 雷暴云不同空间电荷结构数值模拟研究[J]. 高原气象, 22(3):268-274. Guo F X, Zhang Y J, Qie X S, et al, 2003. Numerical simulation of different charge structures in thunderstorm[J]. Plateau Meteor, 22(3):268-274.
郭凤霞, 张义军, 言穆弘, 等, 2007a. 青藏高原雷暴云降水与地面电场的观测和数值模拟[J]. 高原气象, 26(2):257-263. Guo F X, Zhang Y J, Yan M H, et al, 2007. Numerical study and observation of the relationship between surface electric field and precipitation in thunderstorm over Qinghai-Xizang Plateau[J]. Plateau Meteor, 26(2):257-263.
郭凤霞, 张义军, 言穆弘, 2010. 雷暴云首次放电前两种非感应起电参数化方案的比较[J]. 大气科学, 34(2):361-373. Guo F X, Zhang Y J, Yan M H, et al, 2010. Comparison of two parameterization schemes for non-inductive mechanism before the first discharge in a simulated single cell storm[J]. Chinese J Atmos Sci, 34(2):361-373.
孔凡铀, 黄美元, 徐华英, 1990. 对流云中冰相过程的三维数值模拟Ⅰ:模式建立及冷云参数化[J]. 大气科学, 14(4):441-453. Kong F Y, Huang M Y, Xu H Y, 1990. Three-dimensional numerical simulation of ice phase microphysics in cumulus clouds. PartⅠ:Model establishment and ice cloud parameterization[J]. Chinese J Atmos Sci, 14(4):441-453.
孔凡铀, 黄美元, 徐华英, 1991. 对流云中冰相过程的三维数值模拟Ⅱ:繁生过程作用[J]. 大气科学, 15(6):78-88. Kong F Y, Huang M Y, Xu H Y, 1991. Three-dimensional numerical simulation of ice phase microphysics in cumulus clouds. PartⅡ:Effects of multiplication processes[J]. Chinese J Atmos Sci, 15(6):78-88.
梁梦雪, 郭凤霞, 吴鑫, 等, 2016. 冰相粒子的相对增长对非感应起电影响的模拟研究[J]. 高原气象, 35(2):538-547. Liang M, Guo F X, Wu X, et al, 2016. Numerical simulation of influence of relative growth of ice and graupel on noninductive electrification[J]. Plateau Meteor, 35(2):538-547. DOI:10.7522/j. issn. 1000-0534.2015.00013.
陆干沂, 2016. 强雷暴中复杂电荷结构的数值模拟[D]. 南京:南京信息工程大学, 1-54. Lu G Y, 2016. Occurrence conditions of positive cloud-to-ground flashes in severe thunderstorms[D]. Nanjing:Nanjing University of Information Science and Technology, 1-54.
郄秀书, 张广庶, 孔祥贞, 等, 2003. 青藏高原东北部地区夏季雷电特征的观测研究[J]. 高原气象, 22(3):209-216. Qie X S, Zhang G S, Kong X Z, et al, 2003. Observation on the summer lightning discharge in the northeastern verge of Qinghai-Xizang Plateau[J]. Plateau Meteor, 22(3):209-216.
孙安平, 言穆弘, 张义军, 等, 2002a. 三维强风暴动力-电耦合数值模拟研究Ⅰ:模式及其电过程参数化方案[J]. 气象学报, 60(6):722-731. Sun A P, Yan M H, Zhang Y J, et al, 2002a. Numberical study of thunderstorm electrification with a three-dimensional dynamics and electrification coupled modelⅠ:Model description and parameterization of electrical processes[J]. Acta Meteor Sinica, 60(6):722-731.
孙安平, 言穆弘, 张义军, 等, 2002b. 三维强风暴动力-电耦合数值模拟研究Ⅱ:电结构形成机制[J]. 气象学报, 60(6):732-739. Sun A P, Yan M H, Zhang Y J, et al, 2002b. Numberical study of thunderstorm electrification with a three-dimensional dynamics and electrification coupled modelⅡ:Mechanism of electrical structure[J]. Acta Meteor Sinica, 60(6):732-739.
言穆弘, 刘欣生, 安学敏, 等, 1996a. 雷暴非感应起电机制的模拟研究Ⅰ. 云内因子影响[J]. 高原气象, 15(4):425-437. Yan M H, Liu X S, An X M, et al, 1996a. A simulation study of non-inductive chargingmechanism in thunderstormⅠ. Affect of cloud factor[J]. Plateau Meteor, 15(4):425-437.
言穆弘, 刘欣生, 1996b. 雷暴非感应起电机制的模拟研究:Ⅱ. 环境因子影响[J]. 高原气象, 15(4):438-447. Yan M H, Liu X S, 1996b. A simulation study of non-inductive chargingmechanism in thunderstormⅡ. Affect of environmental factor[J]. Plateau Meteor, 15(4):438-447.
张廷龙, 郄秀书, 言穆弘, 2007. 青藏高原雷暴的闪电特征及其成因探讨[J]. 高原气象, 26(4):774-782. Zhang T L, Qie X S, Yan M H, 2007. The lightning characteristics of thunderstorm over Tibetan Plateau and its origin discussion[J]. Plateau Meteor, 26(4):774-782.
张廷龙, 郄秀书, 言穆弘, 等, 2009. 中国内陆高原不同海拔地区雷暴电学特征成因的初步分析[J]. 高原气象, 28(5):1006-1017. Zhang T L, Qie X S, Yan M H, et al, 2009. Preliminary analysis on formation of electrical characteristics of thunderstorm in different altitude regions in Chinese Inland Plateau[J]. Plateau Meteor, 28(5):1006-1017.
赵阳, 张义军, 董万胜, 等, 2004. 青藏高原那曲地区雷电特征初步分析[J]. 地球物理学报, 47(3):405-410. Zhao Y, Zhang Y J, Dong W S, et al, 2004. Preliminary analysis of characteristics of lightning in the Nagqu area of the Qinghai-Xizang Plateau[J]. Chinese J Geophys, 47(3):405-410.
周晓霞, 丁一汇, 王盘兴, 2008. 夏季亚洲季风区的水汽输送及其对中国降水的影响[J]. 气象学报, 66(1):59-70. Zhou X X, Ding Y H, Wang P X, 2008. Moisture transport in Asian summer monsoon region and its relationship with summer precipitation in China[J]. Acta Meteor Sinca, 66(1):59-70.
[1] 刘菊菊, 游庆龙, 王楠. 青藏高原夏季云水含量及其水汽输送年际异常分析[J]. 高原气象, 2019, 38(3): 449-459.
[2] 陈月, 李跃清, 范广洲, 陈宇航. 青藏高原大气蕴含潜热时空分布特征研究[J]. 高原气象, 2019, 38(3): 460-473.
[3] 王奕丹, 胡泽勇, 孙根厚, 谢志鹏, 严晓强, 郑汇璇, 付春伟. 高原季风特征及其与东亚夏季风关系的研究[J]. 高原气象, 2019, 38(3): 518-527.
[4] 郑汇璇, 胡泽勇, 孙根厚, 谢志鹏, 严晓强, 王奕丹, 付春伟. 那曲高寒草地总体输送系数及地面热源特征[J]. 高原气象, 2019, 38(3): 497-506.
[5] 王梦旖, 谭涌波, 师正, 刘俊, 于梦颖, 郑天雪. 大气冰核谱对雷暴云微物理过程及起电影响的数值模拟[J]. 高原气象, 2019, 38(3): 593-603.
[6] 明绍慧, 秦正坤, 黄瑜. 卫星资料揭示的青藏高原对流层上层温度气候演变趋势特征[J]. 高原气象, 2019, 38(2): 264-277.
[7] 杜牧云, 王斌, 肖艳姣, 付志康, 周伶俐. X波段双线偏振雷达青藏高原观测资料质量分析[J]. 高原气象, 2019, 38(2): 278-287.
[8] 常姝婷, 刘玉芝, 华珊, 贾瑞. 全球变暖背景下青藏高原夏季大气中水汽含量的变化特征[J]. 高原气象, 2019, 38(2): 227-236.
[9] 于涵, 张杰, 刘诗梦. 青藏高原地表非绝热加热模态及其与中国北方环流异常的联系[J]. 高原气象, 2019, 38(2): 237-252.
[10] 严晓强, 胡泽勇, 孙根厚, 谢志鹏, 王奕丹, 郑汇璇. 那曲高寒草地长时间地面热源特征及其气候影响因子分析[J]. 高原气象, 2019, 38(2): 253-263.
[11] 余小嘉, 杨胜朋, 蒋熹. COSMIC掩星资料在青藏高原地区的偏差特征[J]. 高原气象, 2019, 38(2): 288-298.
[12] 朱平, 俞小鼎. 青藏高原东北部一次罕见强对流天气的中小尺度系统特征分析[J]. 高原气象, 2019, 38(1): 1-13.
[13] 屠妮妮, 郁淑华, 高文良. 风场对高原涡在河套地区打转影响的初步分析[J]. 高原气象, 2019, 38(1): 66-77.
[14] 胡梦玲, 游庆龙. 青藏高原南侧经圈环流变化特征及其对降水影响分析[J]. 高原气象, 2019, 38(1): 14-28.
[15] 王玉琦, 鲍艳, 南素兰. 青藏高原未来气候变化的热动力成因分析[J]. 高原气象, 2019, 38(1): 29-41.