Please wait a minute...
高级检索
高原气象  2018, Vol. 37 Issue (4): 886-898    DOI: 10.7522/j.issn.1000-0534.2018.00004
论文     
青藏高原土壤湿度对一例高原涡影响的数值模拟
章焕1, 范广洲1,2, 张永莉1, 赖欣1
1. 成都信息工程大学大气科学学院/高原大气与环境四川省重点实验室/气候与环境变化联合实验室, 四川 成都 610225;
2. 南京信息工程大学气象灾害预报预警与评估协同创新中心, 江苏 南京 210044
Numerical Simulation of the Effect of Soil Moisture on a Case of Plateau Vortex over Qinghai-Tibetan Plateau
ZHANG Huan1, FAN Guangzhou1,2, ZHANG Yongli1, LAI Xin1
1. School of Atmospheric Sciences/Plateau Atmosphere and Environment Key Laboratory of Sichuan Province/Joint Laboratory of Climate and Environment Change, Chengdu University of Information Technology, Chengdu 610225, Sichuan, China;
2. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China
 全文: PDF 
摘要: 采用NCEP-FNL再分析资料、FY-2E气象卫星的黑体亮温TBB(Temperature of Black Body)数据以及中国自动站与CMORPH(Climate Prediction Center Morphing)卫星的融合降水产品,通过中尺度天气模式WRFV3.8.1对2014年8月16-17日一次高原涡过程进行了控制试验和4组针对高原土壤湿度的敏感性试验,研究了土壤湿度通过地面加热对高原涡影响的物理机制。结果表明,控制试验能较好地模拟出此次高原涡的位置、强度及降水。土壤湿度对高原涡的强度和降水有重要的作用,而对高原涡的性质和移动路径影响不显著。同时,主要考虑土壤湿度通过地表潜、感热通量的变化来影响高原涡。当土壤湿度增大时,地表潜热通量增大,中低层大气不稳定性增强,对流系统活动所需能量得到积累,使得对流降水增加,最终通过增加凝结潜热的释放来加强高原涡强度;反之高原涡强度和降水都减弱。而本文中地表感热通量的变化对高原涡的生成并没有多大影响,因此只考虑其对对流性降水的影响。当土壤湿度增大时,地面温度减小,地表感热通量减小,行星边界层高度PBLH(Planetary Boundary Layer Height)降低,边界层气团的湿静力能增大,使得对流降水增加;反之对流降水减小。
关键词: 青藏高原土壤湿度高原涡数值模拟    
Abstract: Using the National Centers for Environmental Predication Final Analyses (NCEP-FNL) reanalysis data, the temperature of brightness blackbody (TBB) data from FY-2E meteorological satellite, and the Climate Prediction Center morphing technique (CMORPH) precipitation data, the effect of soil moisture on a plateau vortex occurring from 16 to 17 August 2014 over Qinghai-Tibetan Plateau were analyzed on the numerical simulation for a control experiment and four sensitivity experiments by employing the WRF model (version 3.8.1). The results show that the vortex center, the vortex intensity and the vortex precipitation at 500 hPa were simulated in the control experiment successfully. The soil moisture plays a key role in the intensity and precipitation of the vortex, however, it has no significant influence on the nature and moving path of the plateau vortex. Meanwhile, the soil moisture mainly influences the vortex by changing the surface latent heat flux and the surface sensible heat flux. When the soil moisture increases, the surface latent heat flux increases, and the instability of the air in middle and low atmosphere increases as well, which provides energy for the development of convective systems and increases the convective precipitation, leading to the strengthening of vortex intensity by increasing the release of the condensation heating. On the contrary, the intensity and precipitation of the plateau vortex are both weakened. In the paper, the change of the surface sensible heat flux has little effect on the formation of vortex, hence we just considered its impact on the convective precipitation. When the soil moisture increases, the surface skin temperature gets lower, the surface sensible heat flux decreases and the planetary boundary layer height (PBLH) decreases, thus increasing the moist static energy per unit mass of air, which increases the convective precipitation. Otherwise, the convective precipitation decreases.
Key words: Qinghai-Tibetan Plateau    soil moisture    plateau vortex    numerical simulation
收稿日期: 2017-09-20 出版日期: 2018-08-22
:  P435+.1  
基金资助: 国家自然科学基金项目(91537214,41275079,41305077,41305042,41405069,41505078);公益性(气象)行业科研专项(GYHY201506001);四川省教育厅重点项目(16ZA0203);成都信息工程大学中青年学术带头人科研基金(J201516,J201518)
通讯作者: 范广洲(1970-),男,山东人,教授,主要从事气候变化与数值模拟研究.E-mail:fanggz@cuit.edu.cn     E-mail: fanggz@cuit.edu.cn
作者简介: 章焕(1993-),男,浙江杭州人,硕士研究生,主要从事气候变化研究与数值模拟.E-mail:cuit_zh@163.com
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
章焕
范广洲
张永莉
赖欣

引用本文:

章焕, 范广洲, 张永莉, 赖欣. 青藏高原土壤湿度对一例高原涡影响的数值模拟[J]. 高原气象, 2018, 37(4): 886-898.

ZHANG Huan, FAN Guangzhou, ZHANG Yongli, LAI Xin. Numerical Simulation of the Effect of Soil Moisture on a Case of Plateau Vortex over Qinghai-Tibetan Plateau. Plateau Meteorology, 2018, 37(4): 886-898.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2018.00004        http://www.gyqx.ac.cn/CN/Y2018/V37/I4/886

Chen F, Mitchell K, Schaake J, et al, 1996. Modeling of land surface evaporation by four schemes and comparison with FIFE observations[J]. J Geophys Res:Atmospheres, 101(D3):7251-7268.
Dell'Osso L, Chen S J, 1986. Numerical experiments on the genesis of vortices over the Qinghai-Tibet plateau[J]. Tellus, 38A(3):236-250.
Dudhia J, 1989. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model[J]. J Atmos Sci, 46(46):3077-3107.
Kain J S, 2004. The Kain-Fritsch convective parameterization:An update[J]. J Appl Meteor, 43(1):170-181.
Kun-Young B, 2007. Effects of surface conditions on Landfalling Typhoons[C]. Abstract Collection of the Third China-Korea-Japan Joint Conference on Meteorology. 2007:1.
Luo S W, He M L, Liu X D, 1994. Study on the vortex of the Qinghai-Xizang (Tibet) Plateau in summer[J]. Sci China, Ser. B, 37(5):601-601.
Mlawer E J, Taubman S J, Brown P D, et al, 1997. Radiative transfer for inhomogeneous atmospheres:RRTM, a validated correlated-k model for the longwave[J]. J Geophys Res Atmos, 102(14):16663-16682.
Pal J S, Eltahir E A B, 1951. Pathways relating soil moisture conditions to future summer rainfall within a model of the land-atmosphere system[J]. J Climate, 14(6):1227-1242.
Schär, Christoph, Lüthi, et al, 1978. The soil-precipitation feedback:A process study with a regional climate model[J]. J Climate, 12(3):722-741.
Shen R, Reiter E R, Bresch J F, 1986. Some aspects of the effects of sensible heating on the development of summer weather systems over the Tibetan Plateau[J]. J Atmos Sci, 43(20):2241-2260.
Sugimoto S, Ueno K, 2010. Formation of mesoscale convective systems over the eastern Tibetan Plateau affected by plateau-scale heating contrasts[J]. J Geophys Res Atmos, 115(D16):751-763.
Feng X, Liu C, Rasmussen R, et al, 2014. A 10-yr climatology of Tibetan Plateau vortices with NCEP climate forecast system reanalysis[J]. J Appl Meteor Climatol, 53(1):34-46.
陈伯民, 钱正安, 张立盛, 1996. 夏季青藏高原低涡形成和发展的数值模拟[J]. 大气科学, 20(4):491-502. Chen B M, Qian Z A, Zhang L S, 1996. Numerical simulation of the formation and development of vortices over the Qing-Xizang Plateau in summer[J]. Chinese J Atmos Sci, 20(4):491-502.
杜华武, 颜宏, 1993. 下垫面特征对一次短期天气过程影响的数值试验(Ⅱ)[J]. 应用气象学报, (4):385-393. Du H W, Yan H, 1993. A numerical experiment of the influence of underlying surface on a short-range synoptic process (Ⅱ)[J]. Quart J Appl Meteor, 4(2):385-393.
黄楚惠, 李国平, 2007. 一次东移高原低涡的天气动力学诊断分析[J]. 气象科学, 27(增刊):36-43. Huang C H, Li G P, 2007. Synoptic and dynamic diagnostic analysis for a case of plateau vortex moving east[J]. Scientia Meteopologica Sinica, 27(Suppl):36-43.
黄芳芳, 马伟强, 李茂善, 等, 2016. 藏北高原地表温度对气候变化响应的初步分析[J]. 高原气象, 35(1):55-63. Huang F F, Ma W Q, Li M S, et al, 2016. Analysis on responses of land surface temperature on the Northern Tibetan Plateau to climate chage[J]. Plateau Meteor, 35(1):55-63. DOI:10.7522/j. issn. 1000-0534.2015.00075.
江吉喜, 范梅珠, 2002. 夏季青藏高原上的对流云和中尺度对流系统[J]. 大气科学, 26(2):263-270. Jiang J X, Fan M Z, 2002. Convective clouds and mesoscale convective systems over the Tibetan Plateau in summer[J]. Chinese J Atmos Sci, 26(2):263-270.
李国平, 蒋静, 2000. 一类奇异孤波解及其在高原低涡结构分析中的应用[J]. 气象学报, 58(4):447-456. Li G P, Jiang J, 2000. A type of singular solitary wave and its application of structure analysis of the Tibetan Plateau vortex[J]. Acta Meteor Sinica, 58(4):447-456.
李国平, 刘红武, 2006. 地面热源强迫对青藏高原低涡作用的动力学分析[J]. 热带气象学报, 22(6):632-637. Li G P, Liu H W, 2006. A dynamical study of the role of surface heating on the Tibetan Plateau vortices[J]. J Trop Meteor, 22(6):632-637.
卢萍, 宇如聪, 2008. 地表潜热通量对四川地区降水影响的数值分析[J]. 高原山地气象研究, 28(3):1-7. Lu P, Yu L C, 2008. Numerical analysis on the impacts of surface latent flux transport on Sichuan rainfall process[J]. Plateau Mountain Meteor Res, 28(3):1-7.
罗四维, 杨洋, 1992. 一次青藏高原夏季低涡的数值模拟研究[J]. 高原气象, V11(1):39-48. Luo S W, Yang Y, 1992. A case study on numerical simulation of summer vortex over Qinghai-Xizang (Tibetan) Plateau[J]. Plateau Meteor, 11(1):39-48.
骆美霞, 朱抱真, 张学洪, 1983. 青藏高原对东亚纬向型环流形成的动力作用[J]. 大气科学, 7(2):145-152. Luo M X, Zhu B Z, Zhang X H, 1983. The dynamic effect of Tibet Plateau on the formation of zonal type circulation over east Asia[J]. Scientia Atmos Sinica, 7(2):145-152.
马柱国, 符淙斌, 谢力, 等, 2001. 土壤湿度和气候变化关系研究中的某些问题[J]. 地球科学进展, 16(4):563-568. Ma Z G, Fu Z B, Xie L, et al, 2001. Some problems in the study on the relationship between soil moisture and climatic change[J]. Adv Earth Sci, 16(4):563-568.
钱正安, 1997. 青藏高原气象学的研究进展和问题[J]. 地球科学进展, 12(3):207-216. Qian Z A, 1997. Advances and problems on Qinghai-Xizang Plateau meteorology research[J]. Adv Earth Sci, 12(3):207-216.
乔全明, 张雅高, 1994. 青藏高原天气学[M]. 北京:气象出版社, 120-155. Qiao Q M, Zhang Y G, 1994. Synoptic meteorology of the Tibetan Plateau[M]. Beijing:China Meteorological Press, 120-155.
宋雯雯, 李国平, 唐钱奎, 2012. 加热和水汽对两例高原低涡影响的数值试验[J]. 大气科学, 36(1):117-129. Song W W, Li G P, Tang Q K, 2012. Numerical simulation of the effect of heating and water vapor on two cases of plateau vortex[J]. Chinese J Atmos Sci, 36(1):117-129.
田珊儒, 段安民, 王子谦, 等, 2015. 地面加热与高原低涡和对流系统相互作用的一次个例研究[J]. 大气科学, 39(1):125-136. Tian S R, Duan A M, Wang Z Q, et al, 2015. Interaction of surface heating, the Tibetan Plateau vortex, and a convective system:a case study[J]. Chinese J Atmos Sci, 39(1):125-136.
万云霞, 张宇, 张瑾文, 等, 2017. 感热变化对东亚地区大气边界层高度的影响[J]. 高原气象, 36(1):173-182. Wan Y X, Zhang Y, Zhang J W, et al, 2017. Influence of sensible heat on planetary boundary layer height in East Aisa[J]. Plateau Meteor, 36(1):173-182. DOI:10.7522/j. issn. 1000-0534.2016.00001.
王革丽, 陈万隆, 周锁铨, 1997. 植被和土壤湿度对西南低涡降水影响的敏感性试验[J]. 高原气象, 16(3):243-249. Wang G L, Chen W L, Zhou S Q, 1997. Sensitivity experiments of southwest vortex rain to vegetative cover and soil moisture[J]. Plateau Meteor, 16(3):243-249.
吴国雄, 张永生, 1998. 青藏高原的热力和机械强迫作用以及亚洲季风的爆发*I. 爆发地点[J]. 大气科学, 22(6):825-838. Wu G X, Zhang Y S, 1998. Thermal and mechanical forcing of the Tibetan Plateau and the Asian monsoon onset. Part I:Situating of the onset[J]. Sci Atmos Sinica, 22(6):825-838.
吴海英, 寿绍文, 2002. 位涡扰动与气旋的发展[J]. 南京气象学院学报, 25(4):510-517. Wu H Y, Shou S W, 2002. Potential vorticity disturbance and cyclone development[J]. Journal of Nanjing Institute of Meteorology, 25(4):510-517.
杨克明, 毕宝贵, 2001.1998年长江上游致洪暴雨的分析研究[J]. 气象, 27(8):9-14. Yang K M, Bi B G, 2001. On flood-causing torrential rainfall in the upstream district of Changjiang River in 1998[J]. Meteor Mon, 27(8):9-14.
叶笃正, 罗四维, 朱抱真, 1957. 西藏高原及其附近的流场结构和对流层大气的热量平衡[J]. 气象学报, 28(2):20-33. Ye D Z, Luo S W, Zhu B Z, 1957. The wind structure and heat balance in the lower troposphere over Tibetan Plateau and its surrounding[J]. Acta Meteor Sinica, 28(2):20-33.
叶笃正, 高由禧, 1979. 青藏高原气象学[M]. 北京:科学出版社, 7-8. Ye D Z, Gao Y X, 1979. Tibetan plateau meteorology[M]. Beijing:Science press, 7-8.
曾群柱, 谢应钦, 1980. 从地表辐射平衡、热量平衡论青藏高原的热力作用[J]. 科学通报, 25(12):552-554. Zeng Q Z, Xie Y Q, 1980. Thermal effects of the Qinghai-Tibet Plateau on the surface radiation balance and heat balance[J]. Chinese Sci Bull, 25(12):552-554.
曾钰婵, 范广洲, 赖欣, 等, 2016. 青藏高原季风活动与大气热源/汇的关系[J]. 高原气象, 35(5):1148-1156. Zeng Y C, Fan G Z, Lai X, et al, 2016. Relationship between the Qinghai-Xizang Plateau monsoon and the atmospheric heat source/sink[J]. Plateau Meteor, 35(5):1148-1156. DOI:10.7522/j. issn. 1000-0534.2015.00093.
张永莉, 范广洲, 朱克云, 等, 2016. 春季南支槽的年代际变化及其与降水、大气环流的关系[J]. 高原气象, 35(4):934-945. Zhang Y L, Fan G Z, Zhu K Y, et al, 2016. Interdecadal variation of springtime southern branch trough and its relationship with precipitation and atmospheric circulation[J]. Plateau Meteor, 35(4):934-945. DOI:10.7522/j. issn. 1000-0534.2014.00157.
[1] 栾澜, 孟宪红, 吕世华, 韩博, 李照国, 赵林, 李瑞青. 青藏高原土壤湿度触发午后对流降水模拟试验研究[J]. 高原气象, 2018, 37(4): 873-885.
[2] 杨启东, 凌彩云, 杜冰, 王丽娟, 杨扬. 粒子群算法在陆面过程模式参数优化中的应用研究[J]. 高原气象, 2017, 36(4): 1060-1071.
[3] 孙学金, 李岩, 张燕鸿, 宁辉, 唐敬, 文元宏, 苗青建. 基于WRF-LES的干旱湖区近地面风场模拟与敏感性研究[J]. 高原气象, 2017, 36(3): 835-844.
[4] 张宇, 陈德辉, 仲跻芹. 数值预报在青藏高原的不确定性对其下游预报的影响[J]. 高原气象, 2016, 35(6): 1430-1440.
[5] 陈贵川, 吴钲, 谌芸, 李强, 朱岩. 中低层增温对强降水中涡旋形成的敏感性研究[J]. 高原气象, 2016, 35(6): 1498-1511.
[6] 苗春生, 刘维鑫, 王坚红, 吴旻, 李婷. 梅雨期经大别山两侧暴雨中尺度低涡对比分析[J]. 高原气象, 2014, 33(2): 394-406.
[7] 陈磊;田文寿;王婵. 半干旱区植被减少与城市化对大气的局地和非局地影响的数值模拟[J]. 高原气象, 2009, 28(2): 233-245.
img

QQ群聊

img

官方微信