Please wait a minute...
高级检索
高原气象  2018, Vol. 37 Issue (4): 970-980    DOI: 10.7522/j.issn.1000-0534.2018.00005
论文     
一次“大气河”背景下东北冷涡暴雨的诊断分析
孙颖姝1, 王咏青1, 沈新勇1,2, 周玉淑2,3, 邓国4
1. 南京信息工程大学气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室/气象灾害预报预警与评估协同创新中心/大气科学学院, 江苏 南京 210044;
2. 中国科学院大气物理研究所云降水物理与强风暴重点实验室(LACS), 北京 100029;
3. 中国科学院大学, 北京 100049;
4. 国家气象中心, 北京 100029
Diagnostic Analysis on a Heavy Rainfall Associated with the Northeast Cold Vortex and Atmospheric River
SUN Yingshu1, WANG Yongqing1, SHEN Xinyong1,2, ZHOU Yushu2,3, DENG Guo4
1. Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/School of Atmospheric Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China;
2. Key Laboratory of Cloud-Precipitation Physics and Severe Storms, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China;
3. University of Chinese Academy of Sciences, Beijing 100049, China;
4. National Meteorological Center, Beijing 100029, China
 全文: PDF 
摘要: 利用FNL再分析资料、NCEP GDAS资料和观测降水资料,应用HYSPLIT轨迹追踪模式,对2016年7月25日一次东北冷涡暴雨过程的天气形势背景、大气河在暴雨过程中的作用及其在暴雨前后的演变特征以及暴雨水汽来源进行了诊断分析。结果表明,此次暴雨发生在有利的天气形势背景下,东北冷涡、鄂海阻高、日本以东的低压、高低空急流是这次过程的主要影响系统。暴雨过程中有两条源于西太平洋的大气河,一条经我国南海区域向北继而向东北延伸,核心水汽通量极强,另一条经东海、黄海向北输送,两条大气河的湿层均十分深厚。通过大气河的输送作用,热带地区的暖湿水汽直接输送到中纬度地区,为此次暴雨的产生和维持提供了良好的水汽条件。南来的暖湿气流与东北冷涡环流的偏北干冷气流汇合,在暴雨区附近产生了强烈上升运动,是此次暴雨的主要动力抬升机制。水汽轨迹追踪表明此次暴雨的水汽源地主要有西太平洋、南海、孟加拉湾和欧亚大陆,低层水汽主要由偏南大气河输送,中层水汽主要来自于西南大气河。
关键词: 东北冷涡大气河暴雨轨迹追踪    
Abstract: Based on the FNL reanalysis and HYSPLIT model driven by NCEP GDAS data, this study examined a heavy rainfall associated with the northeast cold vortex (NECV) and atmospheric rivers (ARs) over the northeast China occurred on July 25, 2016. The results indicated that the heavy rainfall occurred in a favorable synoptic pattern, NECV, the Okhotsk blocking high, the low at the east of Japan, upper-and low-level jet played important roles in the process. There were two ARs that both originated from the Western Pacific and coupled with deep wet layers during this event. However, one of the two ARs flowed northward to the northeast China through the East China sea and the Yellow Sea and the other flowed northeastward through the South China Sea with considerable moisture. ARs provided favorable moisture condition for the heavy rainfall by entraining abundant moisture from tropical regions to mid-latitudes directly. The convergence of moist air from tropical origin and dry air from the circulation of NECV induced intense ascending motions in surrounding regions, which was the main dynamic uplift mechanism of the intense rainfall. Analysis of the trajectory tracking reveals that the most significant moisture sources of the heavy rainfall were the Western Pacific, the South China Sea, the Bay of Bengal and the Eurasia. Furthermore, the moisture within the lower and middle troposphere was mainly transported by the south atmospheric river and the southwest atmospheric river separately.
Key words: Northeast clod vortex    atmospheric river    heavy rainfall    trajectory tracking
收稿日期: 2017-09-08 出版日期: 2018-08-22
:  P426  
基金资助: 国家自然科学基金项目(41530427,41661144024,41475054,41475097);国家重点基础研究发展计划(2015CB453201)
通讯作者: 王咏青(1970-),女,江西东乡人,教授,主要从事台风动力学研究、中尺度数值模拟.E-mail:yq.wang@163.com     E-mail: yq.wang@163.com
作者简介: 孙颖姝(1994-),女,山西晋中人,硕士研究生,主要从事暴雨中尺度过程机理和诊断分析.E-mail:461152470@qq.com
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
孙颖姝
王咏青
沈新勇
周玉淑
邓国

引用本文:

孙颖姝, 王咏青, 沈新勇, 周玉淑, 邓国. 一次“大气河”背景下东北冷涡暴雨的诊断分析[J]. 高原气象, 2018, 37(4): 970-980.

SUN Yingshu, WANG Yongqing, SHEN Xinyong, ZHOU Yushu, DENG Guo. Diagnostic Analysis on a Heavy Rainfall Associated with the Northeast Cold Vortex and Atmospheric River. Plateau Meteorology, 2018, 37(4): 970-980.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2018.00005        http://www.gyqx.ac.cn/CN/Y2018/V37/I4/970

Bao J W, Michelson S A, Neiman P J, et al, 2006. Interpretation of enhanced integrated water vapor bands associated with extratropical cyclones:Their formation and connection to tropical moisture[J]. Mon Wea Rev, 134(4):1063-1080.
Dettinger M D, 2004. Fifty-two years of pineapple-express storms across the West Coast of North America[R]. California Energy Commission PIER Energy-Related Environmental Research Report CEC-500-2005-004, 15.
Dettinger M D, Ralph F M, Das T, et al, 2011. Atmospheric rivers, floods, and the water resources of California[J]. Water, 3(2):455-478.
Garaboa D, Eiras B J, Huhn F, et al, 2015. Langrangian coherent structures along atmospheric rivers[J]. Chaos, 25(6):063105.
Gimeno L, Nieto R, Vázquez M, et al, 2014. Atmospheric rivers:A mini-review[J]. Front Earth Sci, 2:1-6.
Gimeno L, Stohl A, Trigo R M, et al, 2012. Oceanic and terrestrial sources of continental precipitation[J]. Rev Geophys, 50(4):RG4003.
Gimeno L, Trigo R M, Ribera P, et al, 2007. Editorial:Special issue on cut-off low systems (COL)[J]. Meteor Atmos Phys, 96(1/2):1-2.
Hirota N, Takayabu Y N, Kato M, et al, 2016. Roles of an atmospheric river and a cutoff low in the extreme precipitation event in Hiroshima on 19 august 2014[J]. Mon Wea Rev, 144(3):1145-1160.
Hoskins B J, McIntyre M E, Robertson A W, 1987. On the use and significance of isentropic potential vorticity maps[J]. Quart J Roy Meteor Soc, 113(475):402-404.
Hu K, Lu R, Wang D, 2010. Seasonal climatology of cutoff lows and associated precipitation patterns over northeast China[J]. Meteor Atmos Phys, 106(1/2):37-48.
Kim H M, Zhou Y, Alexander M A, 2017. Changes in atmospheric rivers and moisture transport over the Northeast Pacific and western North America in response to ENSO diversity[J]. Clim Dyn, 1-14.
Kim J, Waliser D E, Neiman P J, et al, 2013. Effects of atmospheric river landfalls on the cold season precipitation in California[J]. Clim Dyn, 40(1/2):465-474.
Knippertz P, Martin J E, 2005. Tropical plumes and extreme precipitation in subtropical and tropical West Africa[J]. Quart J Roy Meteor Soc, 131(610):2337-2365.
Knippertz P, Wernli H, 2010. A Lagrangian climatology of tropical moisture exports to the Northern hemispheric extratropics[J]. J Climate, 23(4):987-1003.
Knippertz P, Wernli H, Gläser G, 2013. A global climatology of tropical moisture exports[J]. J Climate, 26(10):3031-3045.
Lavers D A, Villarini G, 2013. The nexus between atmospheric rivers and extreme precipitation across Europe[J]. Geophys Res Lett, 40(12):3259-3264.
Molekwa S, Engelbrecht C J, Rautenbach C J deW, 2014. Attributes of cut-off low induced rainfall over the Eastern Cape province of South Africa[J]. Theor Appl Climatol, 118(1/2):307-318.
Neiman P J, Ralph F M, Wick G A, et al, 2008a. Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the West Coast of North America based on eight years of SSM/I satellite observations[J]. J Hydrometeor, 9(1):22-47.
Neiman P J, Ralph F M, Wick G A, et al, 2008b. Diagnosis of an intense atmospheric river impacting the Pacific Northwest:storm summary and offshore vertical structure observed with COSMIC satellite retrievals[J]. Mon Wea Rev, 136(11):4398-4420.
Neiman P J, Schick L J, Ralph F M, et al, 2011. Flooding in western Washington:The connection to atmospheric rivers[J]. J Hydrometeor, 12(6):1337-1358.
Newell R, Newell N, Zhu Y, et al, 1992. Tropospheric rivers-a pilot-study[J]. Geophys Res Lett, 19(24):2401-2404.
Nieto R, Gimeno L, Anel J A, et al, 2007. Analysis of the precipitation and cloudiness associated with COLs occurrence in the Iberian Peninsula[J]. Meteor Atmos Phys, 96(1/2):103-119.
Nieto R, Gimeno L, De La Torre L, et al, 2005. Climatological features of cutoff low systems in the Northern Hemisphere[J]. J Climate, 18(16):3085-3103.
Palmén E, Newton C W, 1969. Atmospheric circulation systems:Their structure and physical interpretation[M]. Academic Press, 603.
Payne A E, Magnusdottir G, 2014. Dynamics of landfalling atmospheric rivers over the North Pacific in 30 years of MERRA reanalysis[J]. J Climate, 27(18):7133-7150.
Ralph F M, Neiman P J, Wick G A, 2004. Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98[J]. Mon Wea Rev, 132(7):1721-1745.
Ralph F M, Neiman P J, Wick G A, et al, 2006. Flooding on California's Russian River:Role of atmospheric rivers[J]. Geophys Res Lett, 33(13):L13801.
Ramos A M, Trigo R M, Liberato M L R, et al, 2015. Daily precipitation extreme events in the Iberian Peninsula and its association with atmospheric rivers[J]. J Hydrometeor, 16(2):579-597.
Rutz J J, Steenburgh W J, Ralph F M, 2014. Climatological characteristics of atmospheric rivers and their inland penetration over the western United States[J]. Mon Wea Rev, 142(2):905-921.
Rutz J J, Steenburgh W J, Ralph F M, 2015. The inland penetration of atmospheric rivers over western North America:A lagrangian analysis[J]. Mon Wea Rev, 143(5):1924-1944.
Singleton A T, Reason C J C, 2007. A numerical model study of an intense cutoff low pressure system over South Africa[J]. Mon Wea Rev, 135(3):1128-1150.
Smith B L, Yuter S E, Neiman P J, et al, 2010. Water vapor fluxes and orographic precipitation over Northern California associated with a landfalling atmospheric river[J]. Mon Wea Rev, 138(1):74-100.
Waliser D E, Moncrieff M W, Burridge D, 2012. The"year"of tropical convection(May 2008-April 2010):Climate variability and weather highlights[J]. Bull Amer Meteor Soc, 93(8):1189-1218.
Zhu Y, Newell R E, 1998. A proposed algorithm for moisture fluxes from atmospheric rivers[J]. Mon Wea Rev, 126(3):725-735.
陈力强, 陈受钧, 周小珊, 等, 2005. 东北冷涡诱发的一次MCS结构特征数值模拟[J]. 气象学报, 63(2):173-183. Chen L Q, Chen S J, Zhou X S, et al, 2005. A numerical study of the MCS in a cold vortex over northeastern China[J]. Acta Meteor Sinica, 63(2):173-183.
李娟, 孙建华, 张元春, 等, 2016. 四川盆地西部与东部持续性暴雨过程的对比分析[J]. 高原气象, 35(1):64-76. Li J, Sun J H, Zhang Y C, et al, 2016. Comparative analysis of persistent heavy rainfall events in west and east Sichuan basin[J]. Plateau Meteor, 35(1):64-76. DOI:10.7522/j. issn. 1000-0534.2014.00150.
廖捷, 徐宾, 张洪政, 2013. 地面站点观测降水资料与CMORPH 卫星反演降水产品融合的试验效果评估[J]. 热带气象学报, 29(5):865-873. Liao J, Xu B, Zhang H Z, 2013. Assessment of experiment of merging gauge observations with CMORPH[J]. J Trop Meteor, 29(5):865-873.
马梁臣, 孙力, 王宁, 2017. 东北地区典型暴雨个例的水汽输送特征分析[J]. 高原气象, 36(4):960-970. Ma L C, Sun L, Wang N, 2017. Analysis of water vapor transport characteristics of typical rainstorm cases in Northeast China[J]. Plateau Meteor, 36(4):960-970. DOI:10.7522/j. issn. 1000-0534.2016.00078.
沈艳, 潘旸, 宇婧婧, 等, 2013. 中国区域小时降水量融合产品的质量评估[J]. 大气科学学报, 36(1):37-46. Shen Y, Pan Y, Yu J J, et al, 2013. Quality assessment of hourly merged precipitation product over China[J]. Trans Atmos Sci, 36(1):37-46.
孙建华, 赵思雄, 傅慎明, 等, 2013.2012年7月21日北京特大暴雨的多尺度特征[J]. 大气科学, 37(3):705-718. Sun J H, Zhao S X, Fu S M, et al, 2013. Multi-scale characteristics of record heavy rainfall over Beijing area on July 21, 2012[J]. Chinese J Atmos Sci, 37(3):705-718.
孙力, 安刚, 高枞亭, 等, 2002.1998年夏季嫩江和松花江流域东北冷涡暴雨的成因分析[J]. 应用气象学报, 13(2):156-162. Sun L, An G, Gao Z T, et al, 2002. A composite diagnostic study of heavy rain caused by the northeast cold vortex over Songhuajiang-Nenjiang River Basin in summer of 1998[J]. J Appl Meteor Sci, 13(2):156-162.
孙力, 王琪, 唐晓玲, 1995. 暴雨类冷涡与非暴雨类冷涡的合成对比分析[J]. 气象, 21(3):7-10. Sun L, Wang Q, Tang X L, 1995. A composite diagnostic analysis of cold vortex of storm-rainfall and non-storm rainfall types[J]. Meteor Mon, 21(3):7-10.
孙力, 郑秀雅, 王琪, 1994. 东北冷涡的时空分布特征及其与东亚大型环流系统之间的关系[J]. 应用气象学报, 5(3):297-303. Sun L, Zheng X Y, Wang Q, 1994. The climatological characteristics of northeast cold vortex China[J]. J Appl Meteor Sci, 5(3):297-303.
王培, 沈新勇, 高守亭, 2012. 一次东北冷涡过程的数值模拟与降水分析[J]. 大气科学, 36(1):130-144. Wang P, Shen X Y, Gao S T, 2012. A numerical study and rainfall analysis of a cold vortex process over Northeast China[J]. Chinese J Atmos Sci, 36(1):130-144.
魏铁鑫, 缪启龙, 段春锋, 等, 2015. 近50a东北冷涡暴雨水汽源地分布及其水汽贡献率分析[J]. 气象科学, 35(1):60-65. Wei T X, Miao Q L, Duan C F, et al, 2015. Water vapor sources distribution of cold eddy rainstorm in northeast China and its contribution analysis in recent fifty years[J]. J Meteor Sci, 35(1):60-65.
吴迪, 姚秀萍, 寿绍文, 2010. 干侵入对一次东北冷涡过程的作用分析[J]. 高原气象, 29(5):1208-1217. Wu D, Yao X P, Shou S W, 2010. Analysis of impact of dry intrusion on a cold vortex process in Northeast China[J]. Plateau Meteor, 29(5):1208-1217.
赵思雄, 刘苏红, 刘名扬, 1980. 夏季北京冷涡强对流天气的中尺度分析[M]. 中国科学院大气物理所集刊(第9号), 北京:科学出版社, 151-160. Zhao S X, Liu S H, Liu M Y, 1980. Mesoscale analysis of strong convective weather system caused by cold vortex over Beijing during summer[M]. Collected Papers of Institute of Atmospheric Physics, Chinese Academy of Sciences, No. 9. Beijing:Science Press, 151-160.
赵煜飞, 朱江, 2015. 近50 年中国降水格点日值数据集精度及评估[J]. 高原气象, 34(1):50-58. Zhao Y F, Zhu J, 2015. Assessing quality of grid daily precipitation datasets in China in recent 50 years[J]. Plateau Meteor, 34(1):50-58. DOI:10.7522/j. issn. 1000-0534.2013.00141.
郑秀雅, 张廷治, 白人海, 1992. 东北暴雨[M]. 北京:气象出版社, 1-299. Zheng X Y, Zhang T Z, Bai R H, 1992. Heavy rainfall in Northeast China[M]. Beijing:China Meteorological Press, 1-299.
[1] 钱正安, 蔡英, 宋敏红, 吴统文, 周建琴, 栾晨. 中国西北旱区暴雨水汽输送研究进展[J]. 高原气象, 2018, 37(3): 577-590.
[2] 谢琰, 文军, 刘蓉, 王欣, 贾东于. 太阳辐射和水汽压差对黄河源区高寒湿地潜热通量的影响研究[J]. 高原气象, 2018, 37(3): 614-625.
[3] 位晶, 段克勤. 基于卫星资料的秦岭南北云系及其垂直结构特征[J]. 高原气象, 2018, 37(3): 777-785.
[4] 王慧清, 付亚男, 包福祥, 孟雪峰. 内蒙古地区多年大气可降水量及其转化效率研究[J]. 高原气象, 2018, 37(3): 786-795.
[5] 除多, 边巴次仁, 扎珠, 德吉央宗. SR-50A超声雪深仪在西藏高原的适用性研究[J]. 高原气象, 2018, 37(2): 382-393.
[6] 薛小宁, 邓小波, 刘贵华. 基于卫星资料的青藏高原卷云特性研究[J]. 高原气象, 2018, 37(2): 505-513.
[7] 许东蓓, 苟尚, 肖玮, 孟丽霞, 沙宏娥, 狄潇泓, 石延召. 两种类型短时强降水形成机理对比分析——以甘肃两次短时强降水过程为例[J]. 高原气象, 2018, 37(2): 524-534.
[8] 李培都, 司建华, 冯起, 赵春彦, 王春林. 1958—2015年敦煌及周边地区极端降水事件的时空变化特征[J]. 高原气象, 2018, 37(2): 535-544.
[9] 姚俊强, 杨青, 毛炜峄, 韩雪云. 基于HYSPLIT4的一次新疆天山夏季特大暴雨水汽路径分析[J]. 高原气象, 2018, 37(1): 68-77.
[10] 崔园园, 覃军, 敬文琪, 谭桂容. GLDAS和CLDAS融合土壤水分产品在青藏高原地区的适用性评估[J]. 高原气象, 2018, 37(1): 123-136.
[11] 贺芳芳, 杨涵洧, 穆海振, 徐卫忠, 徐家良. 上海地区短历时强降水致灾阈值探索[J]. 高原气象, 2017, 36(6): 1567-1575.
[12] 韩熠哲, 马伟强, 王炳赟, 马耀明, 田荣湘. 青藏高原近30年降水变化特征分析[J]. 高原气象, 2017, 36(6): 1477-1486.
[13] 钱正安, 宋敏红, 吴统文, 蔡英. 世界干旱气候研究动态及进展综述(Ⅰ):若干主要干旱区国家的研究动态及联合国的贡献[J]. 高原气象, 2017, 36(6): 1433-1456.
[14] 钱正安, 宋敏红, 吴统文, 蔡英. 世界干旱气候研究动态及进展综述(Ⅱ):主要研究进展[J]. 高原气象, 2017, 36(6): 1457-1476.
[15] 王磊, 陈仁升, 宋耀选. 高寒山区面降水量获取方法及影响因素研究进展[J]. 高原气象, 2017, 36(6): 1546-1556.