Please wait a minute...
高级检索
高原气象  2018, Vol. 37 Issue (4): 873-885    DOI: 10.7522/j.issn.1000-0534.2018.00008
论文     
青藏高原土壤湿度触发午后对流降水模拟试验研究
栾澜1,2, 孟宪红1, 吕世华3,4, 韩博1, 李照国1, 赵林1, 李瑞青5
1. 中国科学院西北生态环境资源研究院/寒旱区陆面过程与气候变化重点实验室, 甘肃 兰州 730000;
2. 中国科学院大学, 北京 100049;
3. 成都信息工程大学大气科学学院/高原大气与环境四川省重点实验室, 四川 成都 610225;
4. 南京信息工程大学气象灾害预报预警与评估协同创新中心, 江苏 南京 210044;
5. 内蒙古气象台, 内蒙古 呼和浩特 010020
Simulation on Afternoon Convective Precipitation Triggered by Soil Moisture over the Qinghai-Tibetan Plateau
LUAN Lan1,2, MENG Xianhong1, LÜ Shihua3,4, HAN Bo1, LI Zhaoguo1, ZHAO Lin1, LI Ruiqing5
1. Key Laboratory for Land Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. College of Amospheric Sciences, Chendu University of Informtion Technology Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, Chengdu 610225, Sichuan, China;
4. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China;
5. Inner Mongolia Meteorological Observatory, Hohhot, 010020, Inner Mongolia, China
 全文: PDF 
摘要: 利用WRF模式设计敏感性试验并结合CTP-HIlow框架(对流触发潜能-低层大气湿度指数)研究了青藏高原土壤湿度变化对午后对流触发和抑制的影响。结果表明,WRF模式对青藏高原降水空间分布体现出了较好的模拟效果,且当土壤湿度减少时,对青藏高原西部降水的模拟有一定的改进。从整体上看,青藏高原地区夏季降水主要受大尺度环流控制,其比例占60%~90%,在高原中部、西南部地区以及东北部区域土壤湿度对降水的影响相对较大。模拟结果显示,当土壤湿度变干时,正反馈作用发生的情况多于负反馈,也就是说更多的情况下是变干的土壤抑制午后对流降水的发生,但也有一部分区域表现为变干的土壤触发午后对流降水的发生,即负反馈。高原西北部较干旱地区由于负反馈所引发的对流降水占总降水的比例较高原其他地区大,最大的影响可达总降水量的80%以上,其机理主要是由于变干的土壤影响地表通量的分配,增加了地表加热大气的感热通量,进一步使大气边界层快速发展,到达自由对流高度后,发生降水。通过对比控制试验和敏感性试验的CTP和HIlow的值可以发现不同年份对应的CTP和HIlow的阈值存在一定的差异,表明土壤湿度是通过同时对地表能量和大气湿度状况协同影响,从而对午后对流触发产生作用。
关键词: 青藏高原土壤湿度对流降水数值模拟    
Abstract: This study designed sensitive experiments using WRF model and used CTP-HIlow framework to investigate the influences of soil moisture change on triggering and inhibiting the afternoon convective precipitation over the Qinghai-Tibetan Plateau. The results show that WRF model can reproduce the spatial distribution of the precipitation over the Qinghai-Tibetan Plateau. In addition, there are some improvements of the precipitation simulation over the west part of the Qinghai-Tibetan Plateau when soil moisture decreases. In general, the statement of large scale atmospheric circulation dominates the occurrence of the afternoon convective precipitation process, especially in the middle, southwestern and northeastern part of the Qinghai-Tibetan Plateau. The large scale atmospheric circulation caused the triggering and inhibiting afternoon convective precipitation events account for about 60%~90% of the total number of the triggered and inhibited precipitation events. According to the results of the simulation, when soil moisture decreases, there are more positive feedback cases than negative feedback cases between soil moisture and afternoon convective precipitation which means the decreasing of the soil moisture inhibits the occurrence of afternoon convective precipitation in most cases. However, relative smaller proportion of the cases is the decreasing soil moisture that triggers the afternoon convective precipitation which is the negative feedback. The amount of convective precipitation triggered by the negative feedback process accounts for larger proportion in the northwest part which is the arid part of the Qinghai-Tibetan Plateau. It has the center value up to 80% or more. The mechanism of negative feedback is that the decreasing soil moisture increases the surface sensible heat flux which influences the distribution of sensitive heat flux over the Qinghai-Tibetan Plateau. The increased sensible heat flux contributes to the development of the boundary layer which makes the air parcel easier to reach the level of free convection and the occurrence of afternoon convective precipitation. By comparing the values of CTP and HIlow between control and sensitive experiments in different years, to some extent, there are differences between these two years. It means that soil moisture can influence occurrence of afternoon convective precipitation through its influences both on the surface energy and the atmosphere humidity.
Key words: Qinghai-Tibetan Plateau    soil moisture    convective precipitation    numerical simulation
收稿日期: 2017-09-16 出版日期: 2018-08-22
:  P435+.1  
基金资助: 国家自然科学基金项目(41375015,91437102,41130961);中国科学院寒旱区陆面过程与气候变化重点实验室开放基金项目(LPCC201504);中国科学院寒区旱区环境与工程研究所青年STS项目(Y651671001);中国科学院创新促进会会员经费(2014384);科技部公益性行业(气象)科研专项重大项目(GYHY201506001-04)
通讯作者: 孟宪红(1980-),女,吉林通化人,研究员,主要从事干旱气候数值模拟与定量遥感反演研究.E-mail:mxh@lzb.ac.cn     E-mail: mxh@lzb.ac.cn
作者简介: 栾澜(1992-),女,辽宁海城人,硕士研究生,主要从事青藏高原陆气相互作用研究.E-mail:lanluan@lzb.ac.cn
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
栾澜
孟宪红
吕世华
韩博
李照国
赵林
李瑞青

引用本文:

栾澜, 孟宪红, 吕世华, 韩博, 李照国, 赵林, 李瑞青. 青藏高原土壤湿度触发午后对流降水模拟试验研究[J]. 高原气象, 2018, 37(4): 873-885.

LUAN Lan, MENG Xianhong, LÜ Shihua, HAN Bo, LI Zhaoguo, ZHAO Lin, LI Ruiqing. Simulation on Afternoon Convective Precipitation Triggered by Soil Moisture over the Qinghai-Tibetan Plateau. Plateau Meteorology, 2018, 37(4): 873-885.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2018.00008        http://www.gyqx.ac.cn/CN/Y2018/V37/I4/873

Avissar R, Liu Y, 1996.3-dimensional numerical study of shallow convective clouds and precipitation induced by land-surface forcing[J]. J Geophys Res, 101(D3):7499-7518. DOI:10.1029/95JD03031.
Chow K, Chan J C L, Shi X, et al, 2007. Time-lagged effects of spring Tibetan Plateau soil moisture on the monsoon over China in early summer[J]. Int J Climatol, 28(1):55-67. DOI:10.1002/joc. 1511.
Dee D P, Uppala S M, Simmons A J, et al, 2011. The ERA-Interim reanalysis:Configuration and performance of the data assimilation system[J]. Quart J Roy Meteor Soc, 137(656):553-597. DOI:10.1002/qj. 828.
Ek M, Mahrt L, 1994. Daytime evolution of relative humidity at the boundary layer top[J]. Mon Wea Rev, 122(12):2709-2721. DOI:10.1175/1520-0493(1994)122<2709:DEORHA>2.0. CO; 2.
Ferguson C R, Wood E F, 2011. Observed land-atmosphere coupling from satellite remote sensing and reanalysis[J]. J Hydrometeor, 12(6):1221-1254. DOI:10.1175/2011JHM1380.1.
Findell K L, Eltahir E A B, 2003. Atmospheric controls on soil moisture-boundary layer interactions. Part I:Framework development[J]. J Hydrometeor, 4(3):552-569. DOI:10.1029/2001JD001515.
Giorgi F, Mearns L O, Shields C, et al, 1996. A regional model study of the importance of local versus remote controls of the 1988 drought and the 1993 flood over the central United States[J]. J Climate, 9:1150-1162. DOI:1520-0442(1996)009<1150:ARMSOT>2.0. CO; 2.
Liu Y Y, Dorigo W A, De Jeu R A M, et al, 2012. Trend-preserving blending of passive and active microwave soil moisture retrievals[J]. Remote Sens Environ, 123:280-297. DOI:10.1016/j. rse. 2012.03.014.
Liu Y Y, Parinussa R M, Dorigo W A, et al, 2011. Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals[J]. Hydrology and Earth System Sciences, 15(2):425-436. DOI:10.5194/hess-15-425-2011.
Meng X H, Li R Q, Luan L, et al, 2017. Detecting hydrological consistency and changes of soil moisture in summer over the Tibetan Plateau using the European Space Agency satellite soil moisture products[J]. Climate Dyn, 1-12. DOI:10.1007/s00382-017-3646-5.
Meng X H, Lü S H, Gao Y H, et al, 2015. Simulated effects of soil moisture on oasis self-maintenance in a surrounding desert environment in Northwest China[J]. Int J Climatol, 35(14):4116-4125. DOI:10.1002/joc. 4271.
Milly P C D, Dunne K A, 1994. Sensitivity of the global water cycle to the water-holding capacity of land[J]. J Climate, 7(4):506-526. DOI:10.1175/1520-0442(1994)007<0506:SOTGWC>2.0. CO; 2.
Paegle J, Mo K C, Nogues-Paegle J, 1996. Dependence of simulated precipitation on surface evaporation during the 1993 United States summer floods[J]. Mon Wea Rev, 124(3):345-361. DOI:10.1175/1520-0493(1996)124<0345:DOSPOS>2.0. CO; 2.
Seneviratne S I, Corti T, Davin E L, et al, 2010. Investigating soil moisture-climate interactions in a changing climate:A review[J]. Earth-Science Reviews, 99(3):125-161. DOI:10.1016/j. earscirev. 2010.02.004.
Shukla J, Mintz Y, 1982. The influence of land-surface evapotranspiration on the earth's climate[J]. Science, 215(4539):1498-1501. DOI:10.1126/science. 215.4539.1498.
Skamarock W C, Klemp J B, Dudhia J, et al, 2008. A description of the advanced research WRF version 3[R]. NCAR Technical Note NCAR/TN-475+STR, 113. DOI:10.5065/D68S4MVH.
Tuinenburg O A, Hutjes R W A, Jacobs C M J, et al, 2011. Diagnosis of local land-atmosphere feedbacks in India[J]. J Climate, 24(1):251-266. DOI:10.1175/2010JCLI3779.1.
Van der V R, Salama MS, Pellarin T, et al, 2014. Long term soil moisture mapping over the Tibetan Plateau using special sensor microwave/imager[J]. Hydrology and Earth System Science, 18(4):1323-1337. DOI:10.5194/hess-18-1323-2014.
Wagner W, Dorigo W, De Jeu R, et al, 2012. Fusion of active and passive microwave observations to create an essential climate variable data record on soil moisture[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Science, 1-7:315-321. DOI:10.5194/isprsannals-I-7-315-2012.
Yeh T C, Wetherald R T, Manabe S, 1984. The effect of soil moisture on the short-term climate and hydrology change-a numerical experiment[J]. Mon Wea Rev, 112(3):474-490. DOI:1520-0493(1984)112<0474:TEOSMO>2.0. CO; 2.
Zaitchik B F, Macalady A K, Bonneau L R, et al, 2006. Europe's 2003 heat wave:A satellite view of impacts and land-atmosphere feedbacks[J]. Int J Climatol, 26(6):743-769. DOI:10.1002/joc. 1280.
戴永久, 曾庆存, 1996. 陆面过程研究[J]. 水科学进展, 7(S1):40-53. Dai Y J, Zeng Q C, 1996. Study on land surface process[J]. Advances in Water Science, 7(S1):40-53.
郭维栋, 马柱国, 王会军, 2007. 土壤湿度-一个跨季度降水预测中的重要因子及其应用探讨[J]. 气候与环境研究, 12(1):20-28. Guo W D, Ma Z G, Wang H J, 2007. Soil moisture-an important factor of seasonal precipitation prediction and its application[J]. Climatic Environ Res, 12(1):20-28. DOI:10.14042/j. cnki. 32.1309.1996. s1.007.
梁乐宁, 陈海山, 2010. 春季华南土壤湿度异常与中国夏季降水的可能联系[J]. 大气科学学报, 33(5):536-546. Liang L N, Chen H S, 2010. Possible linkage between spring soil moisture anomalies over south China and summer rainfall in China[J]. Trans Atmos Sci, 33(5):536-546. DOI:10.3969/j. issn. 1674-7097.2010.05.004.
栾澜, 孟宪红, 吕世华, 等, 2017. 青藏高原一次对流降水模拟中边界层参数化和云微物理的影响研究[J]. 高原气象, 36(2):283-293. Luan L, Meng X H, Lü S H, et al, 2017. Impacts of microphysics and PBL physics parameterization on a convective precipitation over the Qinghai-Xizang Plateau[J]. Plateau Meteor, 36(2):283-293. DOI:10.7522/j. issn. 1000-0534.2016.00086.
马柱国, 符淙斌, 谢力, 等, 2001. 土壤湿度和气候变化关系研究中的某些问题[J]. 地球科学进展, 20(4):563-568. Ma Z G, Fu C B, Xie L, et al, 2001. Some problems in the study on the relationship between soil moisture and climatic change[J]. Advance in Earth Sciences, 20(4):563-568. DOI:10.3321/j. issn:1001-8166.2001.04.019.
马柱国, 魏和林, 符淙斌, 1999. 土壤湿度与气候变化关系的研究进展与展望[J]. 地球科学进展, 14(3):88-94. Ma Z G, Wei H L, Fu C B, 1999. Progress in the research on the relationship between soil moisture and climate change[J]. Adv Earth Sci, 14(3):88-94. DOI:10.3321/j. issn:1001-8166.1999.03.014.
马柱国, 魏和林, 符淙斌, 2000. 中国东部区域土壤湿度的变化及其与气候变率的关系[J]. 气象学报, 58(3):278-287. Ma Z G, Wei H L, Fu C B, 2000. Relationship between regional soil moisture variation and climatic variability over east China[J]. Acta Meteor Sinica, 58(3):278-287. DOI:10.3321/j. issn:0577-6619.2000.03.003.
王万秋, 1991. 土壤温湿异常对短期气候影响的数值模拟试验[J]. 大气科学, 15(5):115-123. Wang W Q, 1991. Numerical experiments of the soil temperature and moisture anomalies' effects on the short term climate[J]. Chinese J Atmos Sci, 15(5):115-123. DOI:10.3878/j. issn. 1006-9895.1991.05.14.
徐祥德, 赵天良, Lu C, 等, 2014. 青藏高原大气水分循环特征[J]. 气象学报, 72(6):1079-1095. Xu X D, Zhao T L, Lu C, et al, 2014. Characteristics of the water cycle in the atmosphere over the Tibetan Plateau[J]. Acta Meteor Sinica, 72(6):1079-1095. DOI:10.11676/qxxb2014.091.
闫之辉, 邓莲堂, 2007. WRF模式中的微物理过程及其预报对比试验[J]. 沙漠与绿洲气象, 1(6):1-6. Yan Z H, Deng L T, 2007. Description of microphysical processes in WRF model and its prediction experiment[J]. Desert Oasis Meteor, 1(6):1-6. DOI:10.3969/j. issn. 1002-0799.2007.06.001.
章国材, 2004. 美国WRF模式的进展和应用前景[J]. 气象, 30(12):27-31. Zhang G C, 2004. Progress of Weather Research and Forecast (WRF) model and application in the United States[J]. Meteor Mon, 30(12):27-31. DOI:10.3969/j. issn. 1000-0526.2004.12.006.
张雯, 王磊, 陈权亮, 2015. 青藏高原东部土壤湿度变化及其与中国降水的关系[J]. 成都信息工程学院学报, 30(1):81-87. Zhang W, Wang L, Chen Q L, 2015. The soil moisture in Eastern of Qinghai-Tibet Plateau and its relationship with precipitation in China[J]. Journal of Chengdu University of Information Technology, 30(1):81-87. DOI:10.3969/j. issn. 1671-1742.2015.01.015.
周娟, 文军, 王欣, 等, 2017. 青藏高原季风演变及其与土壤湿度的相关分析[J]. 高原气象, 36(1):45-56. Zhou J, Wen J, Wang X, et al, 2017. Analysis of the Qinghai-Xizang Plateau monsoon evaluation and its correlation with soil moisture[J]. Plateau Meteor, 36(1):45-56. DOI:10.7522/j. issn. 1000-0534.2016.00003.
卓嘎, 德吉卓玛, 尼玛吉, 2017. 青藏高原土壤湿度分布特征及其对长江中下游6、7月降水的影响[J]. 高原气象, 36(3):657-666. Zhuo G, Deji Z M, Nima J, 2017. Distribution of soil moisture over the Qinghai-Tibetan Plateau and its effect on the precipitation in June and July over the mid-lower reaches of Yangtze River basin[J]. Plateau Meteor, 36(3):657-666. DOI:10.7522/j. issn. 1000-0534.2016.00073.
[1] 章焕, 范广洲, 张永莉, 赖欣. 青藏高原土壤湿度对一例高原涡影响的数值模拟[J]. 高原气象, 2018, 37(4): 886-898.
[2] 杨启东, 凌彩云, 杜冰, 王丽娟, 杨扬. 粒子群算法在陆面过程模式参数优化中的应用研究[J]. 高原气象, 2017, 36(4): 1060-1071.
[3] 孙学金, 李岩, 张燕鸿, 宁辉, 唐敬, 文元宏, 苗青建. 基于WRF-LES的干旱湖区近地面风场模拟与敏感性研究[J]. 高原气象, 2017, 36(3): 835-844.
[4] 张宇, 陈德辉, 仲跻芹. 数值预报在青藏高原的不确定性对其下游预报的影响[J]. 高原气象, 2016, 35(6): 1430-1440.
[5] 陈贵川, 吴钲, 谌芸, 李强, 朱岩. 中低层增温对强降水中涡旋形成的敏感性研究[J]. 高原气象, 2016, 35(6): 1498-1511.
[6] 苗春生, 刘维鑫, 王坚红, 吴旻, 李婷. 梅雨期经大别山两侧暴雨中尺度低涡对比分析[J]. 高原气象, 2014, 33(2): 394-406.
[7] 陈磊;田文寿;王婵. 半干旱区植被减少与城市化对大气的局地和非局地影响的数值模拟[J]. 高原气象, 2009, 28(2): 233-245.
img

QQ群聊

img

官方微信