Please wait a minute...
高级检索
高原气象  2018, Vol. 37 Issue (5): 1177-1187    DOI: 10.7522/j.issn.1000-0534.2018.00016
论文     
高寒生态脆弱区冻土碳水循环对气候变化的响应——以甘南州为例
刘双1,2, 谢正辉1, 高骏强1,3, 曾毓金1, 刘斌1,2, 李锐超1,2
1. 中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室, 北京 100029;
2. 中国科学院大学, 北京 100049;
3. 南京信息工程大学数学与统计学院, 江苏 南京 210044
Response of Carbon and Water Cycles to Climate Change in the High-Frigid Ecotone: A Case Study of Gannan Zone
LIU Shuang1,2, XIE Zhenghui1, GAO Junqiang1,3, ZENG Yujin1, LIU Bin1,2, LI Ruichao1,2
1. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China;
2. College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China;
3. College of Mathematics and StatisticsNanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China
 全文: PDF  HTML
摘要: 以位于青藏高原与黄土高原及陇南山地过渡带的甘南藏族自治州为例,基于考虑土壤冻融界面变化的陆面过程模式研究了1979-2012年冻土变化及水资源与生态系统碳通量对气候变化的响应。结果表明,甘南州气候态多年冻土面积约1.5×104 km2,季节性冻土约占2.5×104 km2,多年冻土最大融化深度呈增加趋势,季节冻土最大冻结深度逐渐减少,整体上冻土正随着气温上升逐步退化;尽管降雨有所增加,而气温上升引起的蒸散发增加也可能是产流减少的原因之一,其中多年冻土区更为敏感,水热变化增减率较季节冻土区大;生态系统碳循环方面,北部主要表现为碳源,南部则表现为碳汇,升温促进植被生长,使得进入生态系统的碳呈略微增加的趋势,尽管总初级生产力(GPP)与净初级生产力(NPP)呈增长趋势,但植被碳利用效率逐步减小,表明气候变化背景下生态系统固碳能力有所退化;最后经多元回归分析可知,气候变化在多年冻土区可以解释66%的NPP变化与31%的生态系统净交换量(NEE)变化,而在季节冻土区则能解释45%的净初级生产力变化。
关键词: 土壤冻融生态水文气候变暖高寒生态脆弱带    
Abstract: The high-frigid ecotone is sensitive to climate change and often faced with shortage of water resources and environmental degradation, so quantitative study on its terrestrial ecological and hydrological change is helpful to better understand the impacts of climate. This work took the Gannan Zone as a case, based on a land model coupled with a scheme of the changes in soil freeze-thaw fronts, firstly partitioned the study area into climatological permafrost and seasonally frozen regions and explored the responses of frozen soil, water resource and carbon cycle to climate change from 1979 to 2012. The results show that climatological permafrost and seasonally frozen areas are about 15 000 km2 and 25 000 km2 respectively. The maximum thaw table depth in the permafrost region increased and the maximum frost table depth in the seasonally frozen region decreased. The precipitation was increasing but the warming air temperature made the evapotranspiration increased and reduced the total runoff so that the available water resource tailed off. The amplitude of decreasement was more obvious in the permafrost region. On the aspect of the ecosystem, the northern Gannan is a carbon source and the southern Gannan is a carbon sink. Climate warming promotes the plant growth, which is in favour of more carbon input from atmosphere. However, the carbon use efficiency decreases. Moreover, according to multiple linear regression analysis, it was found that in the permafrost region climate change can explain 66% of the change in NPP and 31% of the change in NEE, while in the seasonally frozen region only 45% of the change in NPP can be explained.
Key words: Soil freezing and thawing    eco-hydrology    climate warming    high-frigid ecotone
收稿日期: 2017-09-02 出版日期: 2018-10-19
:  P435.1  
基金资助: 中国科学院前沿科学重点研究项目(QYZDY-SSW-DQC012);国家自然科学基金项目(41575096)
通讯作者: 谢正辉(1963-),男,湖南宁乡人,研究员,主要从事陆面过程模式发展及应用研究.E-mail:zxie@lasg.iap.ac.cn     E-mail: zxie@lasg.iap.ac.cn
作者简介: 刘双(1989-),男,四川成都人,博士研究生,主要从事陆地生态水文过程数值模拟研究E-mail:liushuang@mail.iap.ac.cn,510781109@163.com
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘双
谢正辉
高骏强
曾毓金
刘斌
李锐超

引用本文:

刘双, 谢正辉, 高骏强, 曾毓金, 刘斌, 李锐超. 高寒生态脆弱区冻土碳水循环对气候变化的响应——以甘南州为例[J]. 高原气象, 2018, 37(5): 1177-1187.

LIU Shuang, XIE Zhenghui, GAO Junqiang, ZENG Yujin, LIU Bin, LI Ruichao. Response of Carbon and Water Cycles to Climate Change in the High-Frigid Ecotone: A Case Study of Gannan Zone. Plateau Meteorology, 2018, 37(5): 1177-1187.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2018.00016        http://www.gyqx.ac.cn/CN/Y2018/V37/I5/1177

Cheng G D, Wu T H, 2007. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau[J]. J Geophys Res (Earth Surface), 112(F2):F02S03.
Dai Y J, Shangguan W, Duan Q Y, et al, 2013. Development of a China dataset of soil hydraulic parameters using pedotransfer functions for land surface modeling[J]. J Hydrometeor, 14(3):869-887.
Fernández-Martínez M, Vicca S, Janssens I A, et al, 2014. Nutrient availability as the key regulator of global forest carbon balance[J]. Nature Climate Change, 4(6):471-476.
Finger R A, Turetsky M R, Kielland K, et al, 2016. Effects of permafrost thaw on nitrogen availability and plant-soil interactions in a boreal Alaskan lowland[J]. J Ecology, 104(6):1542-1554.
Gao J Q, Xie Z H, Wang A W, et al, 2016. Numerical simulation based on two-directional freeze and thaw algorithm for thermal diffusion model[J]. Applied Mathematics and Mechanics, 37(11):1467-1478.
He J, Yang K, 2011. China meteorological forcing dataset[DB]. Cold and Arid Regions Science Data Center at Lanzhou. DOI:10.3972/westdc. 002.2014. db.
Koven C D, Ringeval B, Friedlingstein P, et al, 2011. Permafrost carbon-climate feedbacks accelerate global warming[J]. Proceedings of the National Academy of Sciences, 108(36):14769-14774.
Liu X D, Chen B D, 2000. Climatic warming in the Tibetan Plateau during recent decades[J]. Int J Climatol, 20(14):1729-1742.
Lu Q, Zhao D S, Wu S H, 2017. Simulated responses of permafrost distribution to climate change on the Qinghai-Tibet Plateau[J]. Scientific Reports (7). DOI:10.1038/s41598-017-04140-7.
Oleson K W, Lawrence D M, Bonan G B, et al, 2013. Technical description of version 4.5 of the Community Land Model (CLM)[M]. National Center for Atmospheric Research.
Ran Y H, Li X, Lu L, et al, 2012. Large-scale land cover mapping with the integration of multi-source information based on the Dempster-Shafer theory[J]. Int J Geograp Inf Sci, 26(1):169-191.
Rogger M, Chirico G, Hausmann H, et al, 2017. Impact of mountain permafrost on flow path and runoff response in a high alpine catchment[J]. Water Resour Res, 53(2):1288-1308.
Xia J Y, Mcguire A D, Lawrence D, et al, 2017. Terrestrial ecosystem model performance in simulating productivity and its vulnerability to climate change in the northern permafrost region[J]. J Geophys Res (Biogeosciences), 122(2):430-446.
Xiong Z, Yan X D, 2013. Building a high-resolution regional climate model for the Heihe River Basin and simulating precipitation over this region[J]. Chinese Sci Bull, 58(36):4670-4678.
Zeng Y J, Xie Z H, Yu Y, et al, 2016. Effects of anthropogenic water regulation and groundwater lateral flow on land processes[J]. Journal of Advances in Modeling Earth Systems, 8(3):1106-1131.
Zeng Y J, Xie Z H, Zou J, 2017. Hydrologic and climatic responses to global anthropogenic groundwater extraction[J]. J Climate, 30(1):71-90.
安华银, 姚玉璧, 尹东, 等, 2007. 甘南高原生物气候资源及其生态农业区划[J]. 干旱气象, 25(1):67-72. An H Y, Yao Y B, Yin D, et al, 2007. Ecoclimate resource and ecological agriculture division in Gannan Plateau[J]. J Arid Meteor, 25(1):67-72.
傅伯杰, 刘国华, 陈利顶, 等, 2001. 中国生态区划方案[J]. 生态学报, 21(1):1-6. Fu B J, Liu G H, Chen L D, et al, 2001. Scheme of ecological regionalization in China[J]. Acta Ecologica Sinica, 21(1):1-6.
高骏强, 2017. 冻土对气候变化的响应及基于POD方法的降维外推算法研究[D]. 北京:华北电力大学, 33-59. Gao J Q, 2017. Frozen ground response to climate change and the POD-based reduced-order extrapolating model[D]. Beijing:North China Electric Power University, 33-59.
韩熠哲, 马伟强, 王炳赟, 等, 2017. 青藏高原近30年降水变化特征分析[J]. 高原气象, 36(6):1477-1486. Han Y Z, Ma W Q, Wang B Y, et al, 2017. Climatic characteristics of rainfall change over the Qinghai-Tibetan Plateau from 1980 to 2013[J]. Plateau Meteor, 36(6):1477-1486. DOI:10.7522/j. issn. 1000-0534.2016.00125
吉哲君, 赵惠珍, 王丽娜, 2016. 甘南高原近 37 年冬季冻土深度变化趋势及影响因子分析[J]. 青海气象 (2):23-29. Ji Z J, Zhao H Z, Wang L N, 2016. The trend of soil frost depth change and its impact factors[J]. Qinghai Meteor (2):23-29.
刘兴元, 冯琦胜, 梁天刚, 等, 2010. 甘南牧区草地生产力与载畜量时空动态平衡研究[J]. 中国草地学报, 32(1):99-106. Liu X Y, Feng Q S, Liang T G, et al, 2010. Spatial-temporal dynamic balance between livestock carrying capacity and productivity of rangeland in Gannan of Gansu province, China[J]. Chinese J Grassland, 32(1):99-106.
雒丽, 赵雪雁, 王亚茹, 等, 2017. 高寒生态脆弱区农户对气候变化的感知[J]. 生态学报, 37(2):593-605. Luo L, Zhao X Y, Wang Y R, et al, 2017. Farmers' perception of climate change in high-frigid ecological vulnerable region:A case of Gannan Plateau[J]. Acta Ecologica Sinica, 37(2):593-605.
王伟军, 赵雪雁, 万文玉, 等, 2016.2000-2014 年甘南高原植被覆盖度变化及其对气候变化的响应[J]. 生态学杂志, 35(9):2494-2504. Wang W J, Zhao X Y, Wan W Y, et al, 2016. Variation of vegetation coverage and its response to climate change in Gannan Plateau from 2000 to 2014[J]. Chinese J Ecology, 35(9):2494-2504.
王根绪, 李元首, 吴青柏, 等, 2006. 青藏高原冻土区冻土与植被的关系及其对高寒生态系统的影响[J]. 中国科学(地球科学), 36(8):743-754. Wang G X, Li Y S, Wu Q B, et al, 2006. The relation between frozen soil and vegetation and its impacts on alpine ecosystem[J]. Sci China (Earth Sci), 36(8):743-754.
谢志鹏, 胡泽勇, 刘火霖, 等, 2017. 陆面模式CLM4.5对青藏高原高寒草甸地表能量交换模拟性能的评估[J]. 高原气象, 36(1):1-12. Xie Z P, Hu Z Y, Liu H L, et al, 2017. Evaluation of the surface energy exchange simulations of land surface model CLM4.5 in alpine meadow over the Qinghai-Xizang Plateau[J]. Plateau Meteor, 36(1):1-12. DOI:10.7522/j. issn. 1000-0534.2016.00012.
阎欣, 甄峰, 席广亮, 2011. 高寒生态脆弱地区城市绿色工业选择与布局研究——以拉萨市为例[J]. 经济地理, 31(7):1139-1145. Yan X, Zhen F, Xi G L, 2011. Study on selection and layout of the green industry in ecological fragile areas of alpine city-the example of the Lasha city[J]. Economic Geography, 31(7):1139-1145.
杨帆, 赵庆云, 张武, 2012. 甘南高原气候变化及对水资源的影响[J]. 干旱气象, 30(3):404-409. Yang F, Zhao Q Y, Zhang W, 2012. Climate change and its influence on water resources in Gannan Plateau[J]. J Arid Meteor, 30(3):404-409.
邹德富, 冯琦胜, 梁天刚, 2011. 甘南地区植被类型及其 NPP 研究[J]. 遥感技术与应用, 26(5):577-583. Zhou D F, Feng Q S, Liang T G, 2011. Research on grassland classification and NPP in Gannan region[J]. Remote Sens Technol and Appl, 26(5):577-583.
[1] 谢志鹏, 胡泽勇, 刘火霖, 孙根厚, 杨耀先, 蔺筠, 黄芳芳. 陆面模式CLM4.5对青藏高原高寒草甸地表能量交换模拟性能的评估[J]. 高原气象, 2017, 36(1): 1-12.
[2] 李书博, 吴统文, 张洁, 张芳, WANG Jun. BCC-AGCM-Chem0模式对20世纪全球O3气候平均态及季节变化特征的模拟研究[J]. 高原气象, 2015, 34(6): 1601-1615.
[3] 孙希进, 陈德辉, 伍湘君, 黄博. 区域模式双向嵌套技术的理想试验分析[J]. , 2014, 33(4): 1022-1033.