Please wait a minute...
高原气象  2018, Vol. 37 Issue (5): 1428-1439    DOI: 10.7522/j.issn.1000-0534.2018.00017
华雯丽, 韩颖, 乔瀚洋, 王天河, 黄忠伟, 闭建荣, 周天
兰州大学, 半干旱气候变化教育部重点实验室, 甘肃 兰州 730000
Profiling of Dust Aerosol Mass Concentration over Dunhuang: Case Studies
HUA Wenli, HAN Ying, QIAO Hanyang, WANG Tianhe, HUANG Zhongwei, BI Jianrong, ZHOU Tian
Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, Gansu, China
 全文: PDF(6744 KB)   HTML
摘要: 针对兰州大学半干旱气候与环境观测站在敦煌地区的沙尘气溶胶加强观测试验,选取2012年春季自然和污染沙尘两种典型天气个例,利用激光雷达退偏观测的优势分离粗(沙尘)、细(背景气溶胶)粒子,反演并对比分析了沙尘气溶胶消光系数及质量浓度的垂直分布特征。研究发现,以4月26日为代表的自然沙尘,粒子退偏比垂直廓线均大于30%,质量浓度呈现单峰结构,1.5 km出现最大值(1 070 μg·m-3);以4月6日为代表的污染沙尘,有明显的气溶胶分层现象,粒子退偏比介于5%~20%,沙尘质量浓度介于2~45 μg·m-3;由于局地污染的影响,污染沙尘的质量消光系数(0.79 m2·g-1)明显大于自然沙尘(0.48 m2·g-1)。因此,为了准确评估沙尘气溶胶的质量浓度,对沙尘天气进行分类,并利用粒子退偏比有效分离沙尘气溶胶尤为重要。
关键词: 敦煌沙尘气溶胶激光雷达质量浓度    
Abstract: Dunhuang is located in the dust source area and also heavy industry base, natural dust events and pollution dust weather are its typical weather process. Therefore, this paper aims at the typical characteristics of dust weather in Dunhuang, using the data of Micro Pulse Lidar (MPL) and Photometer CE318 based on intensify observation of Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL) in Dunhuang. Applying the detection advantages of laser lidar polarization technology, combining local weather character, two cases of typical dust weather in spring 2012 were chosen to be quantitatively analyzed. According to dust depolarization ratio from observation, coarse particle (dust aerosol) and fine particle (background aerosol) were separated to retrieve their extinction coefficients and mass concentrations vertical distribution. In natural dust day, represented by 26 April 2012, appearing a strong dust layer, the particle depolarization ratio profile totally larger than 30% with the strong asphericity. Due to the influence of aerosol particle size distribution and its composition, the aerosol lidar ratio gradually decreases in the whole period. At 18:45 on 26 April 2012, the extinction coefficient and mass concentration profile both appeared the single-peakstructure and the maximum value of were Mm-1 and 1 070 μg·m-3 at 1.5 km. In polluted dust day, represented by 6 April 2012, three parent vertical aerosol layers were observed demonstrating obvious aerosol stratification and mixing. At 16:55 on 6 April 2012, the particle depolarization ratio was 5%~20% and the mass concentration was 2~45 μg·m-3. On the bottom aerosol layer, local pollution contributed most and fine aerosol mass concentration was about 17 μg·m-3 at 1.5 km; dust from long distance transport contributed most in middle (2.5~3.7 km) and top (5.5~7.2 km) aerosol layer, and dust mass concentration were 29 μg·m-3 and 18 μg·m-3. Compared with the natural dust weather, there is a strong heterogeneity in polluted dust day. Because of local pollution and aerosol mixture during transport, dust mass-specific extinction coefficients of polluted dust day (0.79 m2·g-1) was bigger than dust day (0.48 m2·g-1). The depolarization ratio from lidar detection reflects the proportion of dust aerosols in the atmosphere to a certain extent, which exhibit that the method combined with particle depolarization ratio to separating coarse and fine particles applied well in the dust and anthropogenic aerosol mixed area, which could benefit the characteristics study of dust and fine particles under different atmospheric conditions. Therefore, effectively separating dust and fine aerosol are significant to evaluate optical and physical characteristics as extinction coefficient and mass concentration of dust aerosol.
Key words: Dunhuang    dust aerosol    lidar    mass concentrations
收稿日期: 2017-10-20 出版日期: 2018-10-19
ZTFLH:  P407.5  
基金资助: 国家自然科学基金项目(41375031,41430425,41775022);兰州大学中央高校基本科研业务费专项资金(lzujbky-2017-67)
通讯作者: 王天河(1980-),男,甘肃兰州人,副教授,主要从事气溶胶及云特性的遥感研究     E-mail:
作者简介: 华雯丽(1993-),女,山东济南人,硕士研究生,主要从事气溶胶特性的激光雷达反演研究
E-mail Alert


华雯丽, 韩颖, 乔瀚洋, 王天河, 黄忠伟, 闭建荣, 周天. 敦煌沙尘气溶胶质量浓度垂直特征个例分析[J]. 高原气象, 2018, 37(5): 1428-1439.

HUA Wenli, HAN Ying, QIAO Hanyang, WANG Tianhe, HUANG Zhongwei, BI Jianrong, ZHOU Tian. Profiling of Dust Aerosol Mass Concentration over Dunhuang: Case Studies. Plateau Meteorology, 2018, 37(5): 1428-1439.


Ansmann A, Seifert P, Tesche M, et al, 2012. Profiling of fine and coarse particle mass:Case studies of Saharan dust and Eyjafjallajökull/Grimsvötn volcanic plumes[J]. Atmos Chem Phys, 12(20):9399-9415. DOI:10.5194/acp-12-9399-2012.
Ansmann A, Tesche M, Seifert P, et al, 2011. Ash and fine-mode particle mass profiles from EARLINET-AERONET observations over central Europe after the eruptions of the Eyjafjallajökull volcano in 2010[J]. J Geophys Res, 116 (D20):D00U02. DOI:10.1029/2010jd015567.
Burton S, Hair J, Kahnert M, et al, 2015. Observations of the spectral dependence of linear particle depolarization ratio of aerosols using NASA Langley Airborne High Spectral Resolution Lidar[J]. Atmos Chem Phys, 15(23):13453-13473. DOI:10.5194/acp-15-13453-2015.
Cairo F, Di Donfrancesco G, Adriani A, et al, 1999. Comparison of various linear depolarization parameters measured by lidar[J]. Appl Opt, 38(21):4425-4432. DOI:10.1364/AO. 38.004425.
Cattrall C, Reagan J, Thome K, et al, 2005. Variability of aerosol and spectral lidar and backscatter and extinction ratios of key aerosol types derived from selected aerosol robotic network locations[J]. J Geophys Res, 110(D10):D10S11. DOI:10.1029/2004JD005124.
Fernald F G, 1984. Analysis of atmospheric lidar observations:some comments[J]. Appl Opt, 23(5):652-653. DOI:10.1364/AO. 23.000652.
Flynn C J, Mendoza A, Zheng Y, et al, 2007. Novel polarization-sensitive micropulse lidar measurement technique[J]. Opt Express, 15(6):2785-2790. DOI:10.1364/oe. 15.002785.
Freudenthaler V, Esselborn M, Wiegner M, et al, 2009. Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006[J]. Tellus B, 61(1):165-179. DOI:10.1111/j. 1600-0889.2008.00396. x.
Groß S, Tesche M, Freudenthaler V, et al, 2011. Characterization of Saharan dust, marine aerosols and mixtures of biomass-burning aerosols and dust by means of multi-wavelength depolarization and Raman lidar measurements during SAMUM 2[J]. Tellus B, 63(4):706-724. DOI:10.1111/j. 1600-0889.2011.00556. x.
Huang J, Fu Q, Su J, et al, 2009. Taklimakan dust aerosol radiative heating derived from CALIPSO observations using the Fu-Liou radiation model with CERES constraints[J]. Atmos Chem Phys, 9(12):4011-4021. DOI:10.5194/acp-9-4011-2009.
Huang J, Minnis P, Chen B, et al, 2008. Long-range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX[J]. J Geophys Res, 113(D23):D23212. DOI:10.1029/2008JD010620.
Huang J, Wang T, Wang W, et al, 2014. Climate effects of dust aerosols over East Asian arid and semiarid regions[J]. J Geophys Res, 119(19):11398-11416. DOI:10.1002/2014JD021796.
Huang Z, Huang J, Bi J, et al, 2010a. Dust aerosol vertical structure measurements using three MPL lidars during 2008 China-U. S. joint dust field experiment[J]. J Geophys Res:Atmospheres, 115(D7):1307-1314. DOI:10.1029/2009JD013273.
Huang Z, Sugimoto N, Huang J, et al, 2010b. Comparison of depolarization ratio measurements with micro-pulse lidar and a linear polarization lidar in Lanzhou, China[C]//Proc. 25th Int. Laser Radar Conf., St. Petersburg, Russia. 2010:528-531.
Kuzmanoski M, Box M A, Box G P, et al, 2007. Aerosol properties computed from aircraft-based observations during the ACE-Asia campaign:1. Aerosol size distributions retrieved from optical thickness measurements[J]. Aerosol Sci Technol, 41(2), 202-216. DOI:10.1080/02786820601146977.
Li Z Q, Lau W K M, Ramanathan V, et al, 2016. Aerosol and monsoon climate interactions over Asia[J]. Rev Geophys, 54. DOI:10.1002/2015RG000500.
Mamouri R E, Ansmann A, 2014. Fine and coarse dust separation with polarization lidar[J]. Atmos Meas Tech, 7(11):3717-3735. DOI:10.5194/amt-7-3717-2014.
Mamouri R E, Ansmann A, 2017. Potential of polarization/raman lidar to separate fine dust, coarse dust, maritime, and anthropogenic aerosol profiles[J]. Atmos Meas Tech, 10(9):1-41. DOI:10.5194/amt-10-3403-2017.
Murayama T, Müller D, Wada K, et al, 2004. Characterization of Asian dust and Siberian smoke with multi-wavelength Raman lidar over Tokyo, Japan in spring 2003[J]. Geophys Res Lett, 31:L23103. DOI:10.1029/2004GL021105.
Nemuc A, Vasilescu J, Talianu C, et al, 2013. Assessment of aerosol's mass concentrations from measured linear particle depolarization ratio (vertically resolved) and simulations[J]. Atmos Meas Tech, 6(11):3243-3243. DOI:10.5194/amt-6-3243-2013.
Papayannis A, Amiridis V, Mona L, et al, 2008. Systematic lidar observations of Saharan dust over Europe in the frame of EARLINET (2000-2002)[J]. J Geophys Res, 113(D10):D10204. DOI:10.1029/2007jd009028.
Powell D M, Reagan J A, Rubio M A, et al, 2000. Ace-2 multiple angle micro-pulse lidar observations from las galletas, tenerife, canary islands[J]. Tellus B, 52(2):652-661. DOI:10.3402/tellusb. v52i2.17125.
Rosenfeld D, 2000. Suppression of rain and snow by urban and industrial air pollution[J]. Science, 287:1793-1796. DOI:10.1126/science. 287.5459.1793.
Sakai T, Nagai T, Nakazato M, et al, 2003. Ice clouds and Asian dust studied with lidar measurements of particle extinction-to-backscatter ratio, particle depolarization, and water-vapor mixing ratio over Tsukuba[J]. Appl Opt, 42(36):7103-7116. DOI:10.1364/AO. 42.007103.
Von der Gathen P, 1995. Aerosol extinction and backscatter profiles by means of a multiwavelength Raman lidar:a new method without a priori assumptions[J]. Appl Opt, 34(3):463-466. DOI:10.1364/AO. 34.000463.
Wang T H, Huang J P, 2009:A method for estimating optical properties of dusty cloud[J]. China Opt Lett, 7(5):368-372. DOI:10.3788/COL20090705.0368.
Welton E J, Voss K J, Gordon H R, et al, 2000. Ground-based lidar measurements of aerosols during ace-2:instrument description, results, and comparisons with other ground-based and airborne measurements[J]. Tellus B, 52(2):636-651. DOI:10.1034/j. 1600-0889.2000.00025. x.
Winker D M, Vaughan M A, Omar A, et al, 2009. Overview of the CALIPSO mission and CALIOP data processing algorithms[J]. J Atmos Ocean Tech, 26(11):2310-2323. DOI:10.1175/2009JTECHA1281.1.
Yu H, Chin M, Bian H, et al, 2015. Quantification of trans-Atlantic dust transport from seven-year (2007-2013) record of CALIPSO lidar measurements[J]. Remote Sens Environ, 159:232-249. DOI:10.1016/j. rse. 2014.12.010.
曹贤洁, 张镭, 周碧, 等, 2009. 利用激光雷达观测兰州沙尘气溶胶辐射特性[J]. 高原气象, 28(5):1115-1120. Cao X J, Zhang L, Zhou B, et al, 2009. Lidar measurement of dust aerosol radiative property over Lanzhou[J]. Plateau Meteor, 28(5):1115-1120.
郝巨飞, 张功文, 王晓娟, 等, 2017. 一次环境大气重污染过程的监测分析[J]. 高原气象, 36(5):1404-1411. Hao J F, Zhang G W, Wang X J, et al, 2017. Analysis of meteorology detection data during a heavy pollution event[J]. Plateau Meteor, 36(5):1404-1411. DOI:10.7522/j. issn. 1000-0534.2016.00118.
何芸, 2015. 基于偏振激光雷达和CALIPSO对武汉上空沙尘气溶胶的观测研究[D]. 武汉:武汉大学, 1-105. He Y, 2015. Dust aerosols detected using a polarization Lidar and CALIPSO over Wuhan[D], Wuhan:Wuhan University, 1-105.
刘立超, 沈志宝, 王涛, 等, 2005. 敦煌地区沙尘气溶胶质量浓度的观测研究[J]. 高原气象, 24(5):765-771. Liu L C, Shen Z B, Wang T, et al, 2005. Observation study on mass concentration of dust aerosols in Dunhuang[J]. Plateau Meteor, 24(5):765-771.
茹建波, 王天河, 李积明, 等, 2018. 东亚沙尘源区晴空和云上沙尘气溶胶特征研究[J]. 中国沙漠, 38(2):372-383. Ru J B, Wang T H, Li J M, et al, 2018. A study on the characteristics of dust aerosol in both clear-sky and above-cloud conditions over East Asia[J]. J Desert Res, 38(2):372-383.
杨富燕, 张宁, 朱莲芳, 等, 2016. 基于激光雷达和微波辐射计观测确定混合层高度方法的比较[J]. 高原气象, 35(4):1102-1111. Yang F Y, Zhang N, Zhu L F, et al, 2016. Comparison of the mixing layer height determination methods using Lidar and Microwave Radiometer[J]. Plateau Meteor, 35(4):1102-1111. DOI:10.7522/j. issn. 1000-0534.2015.00045.
衣娜娜, 张镭, 刘卫平, 等, 2017. 西北地区气溶胶光学特性及辐射影响[J]. 大气科学, 41(2):409-420. Yi N N, Zhang L, Liu W P, et al, 2017. Optical characteristics and radiative effects of atmospheric aerosol over Northwest China[J]. Chinese J Atmos Sci, 41(2):409-420.
张杰, 唐从国, 2012. 干旱区一次春季沙尘过程的大气气溶胶垂直分布结构及其特征[J]. 高原气象, 31(1):156-166. Zhang J, Tang C G, 2012. Vertical distribution structure and characeristic of aerosol over arid region in a dust proces of spring[J]. Plateau Meteor, 31(1):156-166.
周碧, 张镭, 曹贤洁, 等, 2011. 利用激光雷达资料分析兰州远郊气溶胶光学特性[J]. 高原气象, 30(4):1011-1017. Zhou B, Zhang L, Cao X J, et al, Analyses on atomospheric aerosol optical properties with Lidar data in Lanzhou suburb[J]. Plateau Meteor, 30(4):1011-1017.
[1] 郝巨飞, 袁雷武, 李芷霞, 齐佳慧, 施海瑞. 激光雷达和微波辐射计对邢台市一次沙尘天气的探测分析[J]. 高原气象, 2018, 37(4): 1110-1119.
[2] 李培都, 司建华, 冯起, 赵春彦, 王春林. 1958—2015年敦煌及周边地区极端降水事件的时空变化特征[J]. 高原气象, 2018, 37(2): 535-544.
[3] 史莹莹, 张镭, 田鹏飞, 刘慧, 马强. 黄土高原半干旱区沙尘气溶胶光学和微物理特性[J]. 高原气象, 2018, 37(1): 286-295.
[4] 石春娥, 张浩, 马井会, 吴必文, 王兴, 陈汝龙, 杨元建. 基于器测能见度的霾天气判断标准的探讨[J]. 高原气象, 2017, 36(6): 1693-1702.
[5] 胡晓, 徐璐, 俞科爱, 岑炬辉, 罗玲. 宁波地区一次重污染天气过程的成因分析[J]. 高原气象, 2017, 36(5): 1412-1421.
[6] 周旭, 张镭, 陈丽晶, 郭琪. 沙尘暴过程中沙尘气溶胶对气象场的影响[J]. 高原气象, 2017, 36(5): 1422-1432.
[7] 胡晓, 徐璐, 俞科爱, 岑炬辉, 罗玲. 宁波地区一次重污染天气过程的成因分析[J]. 高原气象, 2017, 36(5): 1412-1421.
[8] 周旭, 张镭, 陈丽晶, 郭琪. 沙尘暴过程中沙尘气溶胶对气象场的影响[J]. 高原气象, 2017, 36(5): 1422-1432.
[9] 杨富燕, 张宁, 朱莲芳, 朱焱. 基于激光雷达和微波辐射计观测确定混合层高度方法的比较[J]. 高原气象, 2016, 35(4): 1102-1111.
[10] 熊洁, 赵天良, 刘煜, 韩永翔, Liu Feng, 李德俊. 青藏高原沙漠化对东亚沙尘气溶胶的敏感性模拟分析[J]. 高原气象, 2016, 35(3): 590-596.
[11] 宿兴涛, 许丽人, 魏强, 张志标, 王胜国, 吴洪星. 东亚地区沙尘气溶胶对降水的影响研究[J]. 高原气象, 2016, 35(1): 211-219.
[12] 张杰, 田文寿, 隆霄, 田红瑛, 黄倩, 许平平, 杨琴, 张健恺. 一次南疆强沙尘暴沙尘向平流层上传的事实及模拟[J]. 高原气象, 2015, 34(4): 991-1004.
[13] 周碧, 张镭, 隋兵, 蒋德明, 曹贤洁, 李霞, 刘志雄. 利用激光雷达探测兰州地区气溶胶的垂直分布[J]. , 2014, 33(6): 1545-1550.
[14] 余予, 孟晓艳, 刘娜, 张志富, 任芝花, 王瑞斌. 近50年春季沙尘活动及其对PM10质量浓度的影响[J]. , 2014, 33(4): 988-994.
[15] 杨琴, 田文寿, 隆霄, 陈磊, 张杰, 黄倩, 田红瑛. 青藏高原沙尘示踪物从对流层向平流层传输的数值模拟[J]. , 2014, 33(4): 887-899.