Please wait a minute...
高级检索
高原气象  2018, Vol. 37 Issue (5): 1304-1312    DOI: 10.7522/j.issn.1000-0534.2018.00019
论文     
长江流域夏季降水异常主模态变化特征及其成因分析
肖志祥1, 谭江红2
1. 广西壮族自治区气象台, 广西 南宁 530022;
2. 湖北省荆州市气象局, 湖北 荆州 434100
The Leading Modes of Summertime Precipitation Anomalies over the Yangtze River Basin and Possible Causes
XIAO Zhixiang1, TAN Jianghong2
1. Guangxi Meteorological Observatory, Nanning 530022, Guangxi, China;
2. Meteorological Bureau of Jingzhou, Jingzhou 434100, Hubei, China
 全文: PDF  HTML
摘要: 利用1961-2014年长江流域202个地面观测站日降水量、中国地面降水格点数据集(V2.0)及JRA-55再分析资料,分析了长江流域夏季降水异常主模态变化特征及其可能成因。结果表明,长江流域夏季降水存在两种空间分布型:第一模态为流域一致型变化,具有显著的年际变化特征,对应长江流域典型旱涝年份;第二主模态在空间上为南北反向型变化,年际变化与显著的年代际尺度相叠加。进一步分析表明,长江流域夏季降水第二主模态与斯堪的纳维亚半岛附近的反气旋式环流异常相联系,并通过200 hPa波列将异常信号传递到东亚,使得南亚高压向西收缩,西北太平洋副热带高压减弱东退,东亚地区夏季水汽输送偏东、偏南,有利于水汽在长江流域南部辐合,北部辐散,使得长江流域夏季降水呈南北反向变化。
关键词: 长江流域夏季降水异常主模态时空变化    
Abstract: Based on the daily mean rainfall data at 202 stations within Yangtze River basin, the daily gridded precipitation, with a horizontal resolution of 0.5°×0.5° for the China domain from National Meteorological Information Center in version 2, and the JRA-55 reanalysis datasets, the leading modes of summertime precipitation anomalies over the Yangtze River basin were investigated with Empirical Orthogonal Function (EOF) and its possible causes were revealed. The analysis showed that there are two dominant modes of the summertime precipitation over Yangtze River basin. The first EOF mode (EOF1) depicts a characteristic of unified spatial distribution with obvious interannual variation, representing the typical drought and flood events of the summer precipitation over the Yangtze River basin. And the second EOF model (EOF2) exhibits a characteristic of meridional dipole pattern with obvious interdecadal variability overlay on interannual variability. Moreover, results also showed that the EOF2 pattern is closely associated with the anti-cyclone anomaly over the Scandinavian Peninsula, which stimulates a teleconnection wave-train at 200 hPa, making the South Asian High shrinks westward and the western Pacific subtropical high shifts eastward. Thus, water vapor transportation shifts eastward and southward over Eastern China, favoring moisture convergent and divergent over the southern and northern part of the Yangtze River basin, respectively. And then the seesaw precipitation anomaly pattern forms over the southern and northern part of the Yangtze River basin.
Key words: Yangtze River basin    summertime precipitation anomalies    leading mode    spatial-temporal variations
收稿日期: 2017-10-10 出版日期: 2018-10-19
:  P466  
基金资助: 广西自然科学基金项目(2017GXNSFBA198133);国家自然科学基金项目(41765002,41465003)
作者简介: 肖志祥(1986-),男,广西来宾人,工程师,主要从事青藏高原气象学及数值天气预报研究.E-mail:xiaozx_gxqxt@163.com
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
肖志祥
谭江红

引用本文:

肖志祥, 谭江红. 长江流域夏季降水异常主模态变化特征及其成因分析[J]. 高原气象, 2018, 37(5): 1304-1312.

XIAO Zhixiang, TAN Jianghong. The Leading Modes of Summertime Precipitation Anomalies over the Yangtze River Basin and Possible Causes. Plateau Meteorology, 2018, 37(5): 1304-1312.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2018.00019        http://www.gyqx.ac.cn/CN/Y2018/V37/I5/1304

Barnston A G, Livezey R E, 1987. Classification, seasonality and persistence of low-frequency atmospheric circulation patterns[J]. Mon Wea Rev, 115(6):1083-1126.
Bretherton C S, Widmann M, Dymnikov V P, et al, 1999. The effective number of spatial degrees of freedom of a time-varying field[J]. J Climate, 12(7):1990-2009.
Bueh C L, Nakamura H, 2007. Scandinavian pattern and its climatic impact[J]. Quart J Roy Meteor Soc, 133(629):2117-2131.
Chen W, Graf H F, Huang R H, 2000. The interannual variability of East Asian winter monsoon and its relation to the summer monsoon[J]. Adv Atmos Sci, 17(1):48-60.
Ebita A, Kobayashi S, Ota Y, et al, 2011. The Japanese 55-year reanalysis "JRA-55":An interim report[J]. Sola, 7(1):149-152.
Enomoto T, Hoskins B J, Matsuda Y, 2003. The formation mechanism of the Bonin high in August[J]. Quart J Roy Meteor Soc, 129(587):157-178.
Gong D Y, Zhu J H, Wang S W, 2002. Significant relationship between spring AO and the summer rainfall along the Yangtze River[J]. Chinese Sci Bull, 47(11):948-951.
North G R, Bell T L, Cahalan R F, et al, 1982. Sampling errors in the estimation of empirical orthogonal functions[J]. Mon Wea Rev, 110(7):699-706.
Smith T N, Reynolds R W, 2003. Extended reconstruction of global sea surface temperature based on COADS data (1854-1997)[J]. J Climate, 16(10):1495-1510.
Takaya K, Nakamura H, 2001. A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow[J]. J Atmos Sci, 58(6):608-627.
Wang Y, Yan Z, 2011. Changes of frequency of summer precipitation extremes over the Yangtze River in association with large-scale oceanic-atmospheric conditions[J]. Adv Atmos Sci, 28(5):1118-1128.
Wu Z H, Huang N E, 2009. Ensemble empirical mode decomposition:A noise-assisted data analysis method[J]. Adv Adap Data Anal, 1(1):1-41.
Xiao M, Zhang Q, Singh V P, 2014. Influences of ENSO, NAO, IOD and PDO on seasonal precipitation regimes in the Yangtze River basin, China[J]. Int J Climatol, 35(12):3556-3567.
Zhang W, Jin F, Stuecker M F, et al, 2016. Unraveling El Niño's impact on the East Asian Monsoon and Yangtze River summer flooding[J]. Geophys Res Lett, 43(21):11375-11382.
布和朝鲁, 施宁, 纪立人, 2008.2000/2001年冬季北欧异常流型形成机理及其对我国北方天气的影响[J]. 高原气象, 27(1):76-83. Bueh C L, Shi N, Ji L R, 2008. Maintenance mechanism of the Scandinavian pattern in its positive phase during 2000/2001 winter and its influence on the weather over the northern part of China[J]. Plateau Meteor, 27(1):76-83.
陈兴芳, 宋文玲, 2000. 欧亚和青藏高原冬春季积雪与我国夏季降水关系的分析和预测应用[J]. 高原气象, 19(2):214-223. Chen X F, Song W L, 2000. Analysis of relationship between snow cover on Eurasia and Qinghai-Xizang Plateau in winter and summer rainfall in China and application to prediction[J]. Plateau Meteor, 19(2):214-223.
董祝雷, 任宝华, 郑建秋, 等, 2016. 前冬澳大利亚周边海温与我国长江流域夏季降水的联系[J]. 大气科学, 40(6):1273-1283. Dong Z L, Ren B H, Zheng J Q, et al, 2016. The relationship between prior-winter SST around Austria and summer rainfall in the Yangtze River valley of China[J]. Chinese J Atmos Sci, 40(6):1273-1283.
龚振凇, 何敏, 2006. 长江流域夏季降水与全球海温关系的分析[J]. 气象, 32(1):56-61. Gong Z S, He M, 2006. Relationship between summer rainfall in Changjiang River valley and SSTA of various seasons[J]. Meteor Mon, 32(1):56-61.
韩冬, 陈海山, 许蓓, 等, 2014. 欧亚大陆春季融雪与长江流域夏季降水的可能联系[J].气象科学, 34(3):237-242.Han D, Chen H S, Xu B, et al, 2014. Impact of spring snowmelt over the Eurasian continent on summer rainfall in Yangtze River valley[J]. J Meteor Sci, 34(3):237-242.
黄荣辉, 蔡榕硕, 陈际龙, 等, 2006. 我国旱涝气候灾害的年代际变化及其与东亚气候系统变化的关系[J]. 大气科学, 30(5):730-743. Huang R H, Cai R S, Chen J L, et al, 2006. Interdecadal variations of drought and flooding disasters in China and their association with the East Asian climate system[J]. Chinese J Atmos Sci, 30(5):730-743.
姜彤, 施雅风, 2003. 全球变暖、长江水灾与可能损失[J]. 地球科学进展, 18(2):277-284. Jiang T, Shi Y F, 2003. Global climatic warming, the Yangtze floods and potential loss[J]. Adv Earth Sci, 18(2):277-284.
敬文琪, 崔园园, 刘瑞霞, 等, 2017. 影响长江中下游夏季降水的青藏高原水汽抽吸作用和水汽路径的定量化研究[J]. 高原气象, 36(4):900-911. Jing W Q, Cui Y Y, Liu R X, et al, 2017. Quantitative study on water vapor pumping over Qinghai-Tibetan Plateau and water vapor paths influencing summer precipitation in the middle and lower reach of the Yangtze River[J]. Plateau Meteor, 36(4):900-911. DOI:10.7522/j. issn. 1000-0534.2016.00084.
刘扬, 刘屹岷, 2016. 我国西南地区秋季降水年际变化的空间差异及其成因[J]. 大气科学, 40(6):1215-1226. Liu Y, Liu Y M, 2016. Spatial pattern and causes of inter-annual variability of autumn rainfall in southwest China[J]. Chinese J Atmos Sci, 40(6):1215-1226.
王静, 祁莉, 何金海, 等, 2016. 青藏高原春季土壤湿度与我国长江流域夏季降 水的联系及其可能机理[J].地球物理学报, 59(11):3985-3995. Wang J, Qi L, He J H, et al, 2016. Relationship between spring soil moisture in the Tibetan Plateau and summer precipitation in the Yangtze River basin and its possible mechanism[J]. Chinese J Geophys, 59(11):3985-3995.
王文, 许志丽, 蔡晓军, 等, 2016. 基于PDSI的长江中下游地区干旱分布特征[J]. 高原气象, 35(3):693-707. Wang W, Xu Z L, Cai X J, et al, 2016. Aridity characteristic in middle and lower reaches of Yangtze River area based on Palmer drought severity index analysis[J]. Plateau Meteor, 35(3):693-707. DOI:10.7522/j. issn. 1000-0534.2015.00011.
张琼, 吴国雄, 2001. 长江流域大范围旱涝与南亚高压的关系[J]. 气象学报, 59(5):569-577. Zhang Q, Wu G X, 2001. The large area flood and drought over Yangtze River valley and its relation to the South Asia High[J]. Acta Meteor Sinica, 59(5):569-577.
赵煜飞, 朱江, 2015. 近50年中国降水格点日值数据集精度及评估[J].高原气象, 34(1):50-58. Zhao Y F, Zhu J, 2015. Assessing quality of grid daily precipitation datasets in China in recent 50 years[J]. Plateau Meteor, 34(1):50-58. DOI:10.7522/j. issn. 1000-0534.2013.00141.
周波涛, 2011. 冬季澳大利亚东侧海温与长江流域夏季降水的联系及可能物理机制[J]. 科学通报, 56(11):1301-1307. Zhou B T, 2011. Linkage between winter sea surface temperature east of Australia and summer precipitation in the Yangtze River valley and a possible physical mechanism[J]. Chinese Sci Bull, 56(11):1301-1307.
[1] 保云涛, 游庆龙, 谢欣汝. 青藏高原积雪时空变化特征及年际异常成因[J]. 高原气象, 2018, 37(4): 899-910.
[2] 陈丹, 周长艳, 熊光明, 邓梦雨. 近53年四川盆地夏季暴雨变化特征分析[J]. 高原气象, 2018, 37(1): 197-206.
[3] 解晋, 余晔, 刘川, 葛骏. 青藏高原地表感热通量变化特征及其对气候变化的响应[J]. 高原气象, 2018, 37(1): 28-42.
[4] 徐安伦, 李育, 杨帆, 苏锦兰, 董保举, 孙绩华. 连年干旱背景下洱海流域降水的精细化特征[J]. 高原气象, 2017, 36(6): 1557-1566.
[5] 许霖, 姚蓉, 王晓雷, 欧小峰. 湖南省雷暴大风的时空分布和变化特征[J]. 高原气象, 2017, 36(4): 993-1000.
[6] 张英华, 李艳, 李德帅. 东亚经向波列对中国中东部盛夏气温的影响[J]. 高原气象, 2017, 36(4): 1010-1021.
[7] 杨玮, 徐敏, 周顺武, 罗连升. 江淮流域6-7月极端强降水事件时空变化及环流异常[J]. 高原气象, 2017, 36(3): 718-735.
[8] 周长艳, 邓梦雨, 齐冬梅. 青藏高原湿池的气候特征及其变化[J]. 高原气象, 2017, 36(2): 294-306.
[9] 马浩, 李正泉, 张力. 南半球环状模对中国气候的影响研究进展[J]. 高原气象, 2016, 35(6): 1595-1608.
[10] 张精华, 张万诚, 郑建萌, 马涛. 1970-2009年冬季昆明准静止锋的变化特征及其影响分析[J]. 高原气象, 2016, 35(5): 1298-1306.
[11] 周俊前, 刘新, 李伟平, 朱陵晶, 吴辉. 青藏高原春季地表感热异常对西北地区东部降水变化的影响[J]. 高原气象, 2016, 35(4): 845-853.
[12] 曾波, 谌芸, 李泽椿. 中国中东部地区夏季中尺度对流系统发生前环境场特征[J]. 高原气象, 2016, 35(2): 460-468.
[13] 张英华, 李艳, 李德帅, 尚可政, 郑凤魁. 中国东部夏季极端高温的空间分布特征及其环流型[J]. 高原气象, 2016, 35(2): 469-483.
[14] 李娟, 孙建华, 张元春, 沈新勇. 四川盆地西部与东部持续性暴雨过程的对比分析[J]. 高原气象, 2016, 35(1): 64-76.
[15] 王丹, 盛立芳, 黄少妮, 白光弼, 高红燕. 孟加拉湾感热净通量与陕西秋季降水的联系[J]. 高原气象, 2015, 34(6): 1658-1667.