Please wait a minute...
高级检索
高原气象  2018, Vol. 37 Issue (5): 1402-1412    DOI: 10.7522/j.issn.1000-0534.2018.00025
论文     
复杂地形条件下风电场预报风速的卡尔曼滤波订正
李照荣, 达选芳, 王有生, 赵文婧, 闫晓敏
甘肃省气象局气象服务中心, 甘肃 兰州 730020
The Correction of Wind Speed Forecasted of Wind Farms under Complex Topographic Conditions using Kalman Filtering
LI Zhaorong, DA Xuanfang, WANG Yousheng, ZHAO Wenjing, YAN Xiaomin
Gansu Meteorological Service Centre, Lanzhou 730020, Gansu, China
 全文: PDF  HTML
摘要: 通过分析位于复杂地形的南湫、黑崖子和干河口风电场测风塔70 m高度的风速、风向分布特征及风速预报的误差特性,基于卡尔曼滤波方法建立了预报风速的订正模型,对预报风速误差进行了订正。结果表明,南湫、黑崖子和干河口风电场的有效风速时数占全年风速时数的百分比分别达90.9%,85.06%和82.93%;各风电场有效风速时数存在显著的时间差异,夏、秋季有效风速时数最大;南湫、黑崖子和干河口分别可达29.65%,27.19%和23.24%;风速日变化特征差异明显,夏季南湫、黑崖子和干河口风速日变化分别呈多峰多谷(或双峰双谷)、单峰单谷、双峰单谷的分布特征;夏到秋季,南湫主导风向为东南风,黑崖子由偏东风转换为偏西风,干河口主导风向稳定为东风或偏东风。风速阵性特征有明显的季节差异,9月黑崖子、干河口风速的阵性变化较6月强,南湫风速的阵性变化6月比9月强。北京快速更新循环数值预报系统(BJ-RUC)对复杂地形风电场风速预报能力存在局限性,主要表现在预报风速的阵性变化相对较小、风速偏大;经卡尔曼滤波方法订正后,数值模式对风速的阵性预报能力增强,预测风速威布尔分布的形状参数和尺度参数逼近实况风速的分布参数,实况风速和预测风速相关系数最大可提高约15%;预报风速的绝对误差、均方根误差也得到了改善,可降至1.30 m·s-1和1.66 m·s-1
关键词: 风速误差订正威布尔分布卡尔曼滤波    
Abstract: The distribution characteristics of wind speed and direction at 70 m and prediction errors of forecast wind speed of three typical wind farms (i. e., Nanqiu, Heiyazi, and Ganhekou) with complex topographic conditions in Gansu were analyzed. A correction model based on Kalman filtering was established to correct wind speed forecasted by Beijing Rapid Updated Cycling Analysis and Forecast System (BJ-RUC). Results show that:The percentage of effective wind speed hours of the total year is 90.9% in Nanqiu, 85.06% in Heiyazi, and 82.93% in Ganhekou, respectively. Significant differences of the percentage of effective wind speed hours exist in different seasons for each wind farm. Specifically, percentages of effective wind speed hours are higher in summer and autumn, and can reach up to 29.65%, 27.19%, 23.24% in Nanqiu, Heiyazi and Ganhekou, respectively. In summer, the diurnal variation of wind speed in Nanqiu has two or three peaks while in Heiyazi is characterized by a single peak and in Ganhekou is performed as double peaks and single valley. From summer to autumn, the prevailing wind direction in Nanqiu is southeast, the leading wind direction in Heiyazi shifts from east to west and the dominant wind direction in Ganhekou persistently keeps easterly persistently. The gustiness of wind speed varies from season to season. The Weibull distribution indicates that the wind speed in september is more volatile than wind speed in June in Heiyazi and Ganhekou. On the contrary, wind speed in June is more volatile than that in september in Nanqiu. Limitations in forecasting wind speed by BJ-RUC are mainly two aspects:one is that the gustiness of prediction wind speed is relatively weaker; The other one is that the wind speed forecasted by model is relatively larger than measured one. However, with the correction by Kalman Filtering method, the capability of forecasting gustiness of wind speed based on numerical weather model has been improved; Weibull distribution shape and scale parameters of the corrected wind speed are approximation to those of measured wind speed. The correlation coefficient of observed speed and corrected speed can be increased by 15%; the absolute error and root mean square error have also been improved significantly, which drop to 1.30 m·s-1 and 1.66 m·s-1.
Key words: Wind speed    error correction    Weibull distribution    Kalman filter
收稿日期: 2017-10-27 出版日期: 2018-10-19
:  P49  
基金资助: 甘肃酒泉风电基地风能预报关键技术应用研究项目(GMAHX20160215)
作者简介: 李照荣(1972-),男,甘肃白银人,正研级高工,主要从事应用气象研究.E-mail:bylzr@126.com
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李照荣
达选芳
王有生
赵文婧
闫晓敏

引用本文:

李照荣, 达选芳, 王有生, 赵文婧, 闫晓敏. 复杂地形条件下风电场预报风速的卡尔曼滤波订正[J]. 高原气象, 2018, 37(5): 1402-1412.

LI Zhaorong, DA Xuanfang, WANG Yousheng, ZHAO Wenjing, YAN Xiaomin. The Correction of Wind Speed Forecasted of Wind Farms under Complex Topographic Conditions using Kalman Filtering. Plateau Meteorology, 2018, 37(5): 1402-1412.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2018.00025        http://www.gyqx.ac.cn/CN/Y2018/V37/I5/1402

Conradsen K, Nielsen L B, Prahm L P, 1984. Review of Weibull statistics for estimation of wind speed distributions[J]. J Appl Meteor, 23(23):1173-1183.
Marzban C, Stumpf G J, 1998. A neural network for damaging wind prediction[J]. Wea Forecasting, 13(1):151-163.
Wang C H, Feng S L, 2014. Error features and their possible causes in simulated low-level winds by WRF at a wind farm[J]. Wind Energy, 17(9):1315-1325.
曹杨, 陈洪滨, 王普才, 2017. 声雷达资料可靠性及近地面边界层风场特征分析[J]. 高原气象, 36(5):1315-1324. Cao Y, Chen H B, Wang P C, 2017. Analysis of the data reliability and wind field characteristics near surface boundary layer with doppler sodar observations[J]. Plateau Meteor, 36(5):1315-1324. DOI:10.7522/j. issn. 1000-0534.2016.00100.
龚伟俊, 李为相, 张广明, 等, 2011. 基于威布尔分布的风速概率分布参数估计方法[J]. 可再生能源, 29(6):20-23. Gong W J, Li W X, Zhang G M, et al, 2011. The estimation algorithm on the probabilistic distribution parameters of wind speed based on Weibull distribution[J]. Renew Energy Res, 29(6):20-23.
黄凤新, 2013. 基于卡尔曼滤波的复杂地形WRF模式预报风速订正[D]. 南京:南京信息工程大学, 1-68. Huang F X, 2013. The WRF model forecast wind speed correction under complex terrain based on Kalman Filter[D]. Nanjing:University of Information Science and Technology, 1-68.
姜广绪, 潘晶雯, 田景奎, 等, 2015. 双参数威布尔分布风况中基于k值分析的能量分布研究[J]. 电力建设, 36(3):105-108. Jiang G X, Pan J W, Tian J K, et al, 2015. Energy distribution research based on the parameter K analysis of two-parameter Weibull distribution wind conditions[J]. Electric Power Construction, 36(3):105-108.
孔玉寿, 钱建明, 臧增亮, 等, 2010. 统计天气预报原理与方法[M]. 北京:气象出版社, 441-447. Kong Y S, Qian J M, Zang Z L, et al, 2010. Statistical weather prediction principles and methods[M]. Beijing:China Meteorological Press, 441-447.
李晓霞, 黄涛, 王兴, 等, 2017. 兰州新区近地层风场时空特征分析[J]. 高原气象, 36(4):1001-1009. Li X X, Huang T, Wang X, et al, 2017. Analysis of characters of wind field in surface layer in Lanzhou New District[J]. Plateau Meteor, 36(4):1001-1009. DOI:10.7522/j. issn. 1000-0534.2016.00092.
陆如华, 徐传玉, 张玲, 等, 1997. 卡尔曼滤波的初值计算方法及其应用[J]. 应用气象学报, 14 (1):34-43. Lu R H, Xu C Y, Zhang L, et al, 1997. Calculation method for initial value of Kalman Filter and its application[J]. J Appl Meteor, 14(1):34-43.
沈德昌, 2015. 我国大型风电机组技术发展情况[J]. 太阳能 (2):11-14. Sheng D C, 2015. The development of large-scale wind turbines in China[J]. Solar Energy (2):11-14.
石岚, 徐丽娜, 郝玉珠, 2017. 多模式风速融合预报应用研究[J]. 高原气象, 36(4):1022-1028. Shi L, Xu L N, Hao Y Z, 2017. Application research on the multi-model fusion forecast of wind speed[J]. Plateau Meteor, 36(4):1022-1028. DOI:10.7522/j. issn. 1000-0534.2017.00021.
孙丹, 2015. 风力发电系统对电网暂态稳定性影响的分析与研究[D]. 北京:华北电力大学, 1-51. Sun D, 2015. Analysis and research on transient stability of power system integrated with wind power generation[D]. Beijing:North China Electric Power University, 1-51.
孙学金, 李岩, 张燕鸿, 等, 2017. 基于WRF-LES的干旱湖区近地面风场模拟与敏感性研究[J]. 高原气象, 36(3):835-844. Sun X J, Li Y, Zhang Y H, et al, 2017. Near-Surface wind simulation over acrid lakeshore area and sensitivity studies using the WRF-LES[J]. Plateau Meteor, 36(3):835-844. DOI:10.7522/j. issn. 1000-0534.2016.00058.
严彦, 许昌, 刘德有, 等, 2011. 测风数据的时间间隔对风速概率分布参数计算的影响[J]. 可再生能源, 29(6):24-28. Yan Y, Xu C, Liu D Y, et al, 2011. Study on probabilistic distribution parameters of wind speed influenced by different anemometer time intervals[J]. Renew Energy Res, 29(6):24-28.
余江, 江志红, 俞卫, 等, 2015. 风电场风速数值预报的误差分析及订正[J]. 气象科学, 35(5):587-592. Yu J, Jiang Z H, Yu W, et al, 2015. Error analysis and correction of wind speed numerical forecast at wind farm[J]. J Meteor Sci, 35(5):587-592.
张飞民, 王澄海, 2014. 利用WRF-3DVAR同化常规观测资料对近地层风速预报改进的试验[J]. 高原气象, 33(3), 675-685. Zhang F M, Wang C H, 2014. Experiment of surface-layer wind forecast improvement by assimilating conventional data with WRF-3DVAR[J]. Plateau Meteor, 33 (3), 675-685. DOI:10.7522/j. issn. 1000-0534.2012.00198.
张兰慧, 尚可政, 程一帆, 等, 2011. 数值预报产品的误差订正方法[J]. 兰州大学学报(自然科学版), 47(3):44-49. Zhang L H, Shang K Z, Cheng Y F, et al, 2011. Study on the correction of numerical prediction products[J]. Journal of Lanzhou University (Natural Sciences), 47(3):44-49.
张双益, 胡非, 2017. 大气边界层与风力发电的相互作用研究综述[J]. 高原气象, 36(4):1127-1137. Zhang S Y, Hu F, 2017. Review on study of atmospheric boundary layer and wind power generation interaction[J]. Plateau Meteor, 36(4):1127-1137. DOI:10.7522/j. issn. 1000-0534.2016.00095.
祝赢, 柳艳香, 程兴宏, 等, 2013. 线性滚动极值处理方法对数值模拟风速的订正研究[J]. 热带气象学报, 29(4):681-686. Zhu Y, Liu Y X, Cheng X H, et al, 2013. A research on revision of simulated wind speed based on linear rolling and extremum procession[J]. J Trop Meteor, 29 (4):681-686.
[1] 周荣卫, 何晓凤. 新疆哈密复杂地形风场的数值模拟及特征分析[J]. 高原气象, 2018, 37(5): 1413-1427.
[2] 张雅斌, 黄蕾, 毛冬艳, 杨睿. 关中盛夏强湿雷暴环境条件与云微物理特征[J]. 高原气象, 2018, 37(1): 167-184.
[3] 刘姝岩, 包云轩, 金建平, 刘诚, 许建明, 李建民, 黄建平. 重霾天气气溶胶辐射效应对近地面臭氧峰值的影响[J]. 高原气象, 2018, 37(1): 296-304.
[4] 常蕊, 申彦波, 郭鹏. 太阳能资源典型年挑选方法的适用性对比研究[J]. 高原气象, 2017, 36(6): 1713-1721.
[5] 石岚, 徐丽娜, 郝玉珠. 多模式风速融合预报应用研究[J]. 高原气象, 2017, 36(4): 1022-1028.
[6] 张双益, 胡非. 大气边界层与风力发电的相互作用研究综述[J]. 高原气象, 2017, 36(4): 1127-1137.
[7] 赖欣, 文军, 范广洲, 宋海清, 张永莉, 朱丽华, 王炳赟. 基于陆面数据同化系统改进中国区域土壤湿度的模拟研究[J]. 高原气象, 2017, 36(3): 776-787.
[8] 王越亚, 邵爱梅. SVD-En3DVar同化方法在一次飑线过程中的应用[J]. 高原气象, 2016, 35(3): 755-766.
[9] 尹继福, 郑有飞, 詹习武, 吴荣军, 刘吉成, 方莉, 关福来, 姚树然. 同化极轨卫星陆地产品对改善陆面模式模拟能力研究进展[J]. 高原气象, 2016, 35(1): 260-276.
[10] 李虎超, 邵爱梅, 何邓新, 王越亚. BP神经网络在估算模式非系统性预报误差中的应用[J]. 高原气象, 2015, 34(6): 1751-1757.
[11] 申彦波, 常蕊, 杜江, 程兴宏. 吐鲁番地区可利用太阳能资源分析[J]. , 2015, 34(2): 470-477.
[12] 王宝, 解福燕, 张自祥, 刘春学. 玉溪空气负氧离子预测模型的建立[J]. 高原气象, 2015, 34(1): 251-257.
[13] 辛渝, 陈洪武. XJRUC/CALMET及CALMET不同参数调整对达坂城—小草湖区风场预报影响[J]. , 2014, 33(6): 1674-1686.
[14] 李红英, 张晓煜, 王静, 郑广芬, 王素艳. 基于CI指数的宁夏干旱致灾因子特征指标分析[J]. , 2014, 33(4): 995-1001.
[15] 何邓新, 邵爱梅. 判断大气要素场相似度的相似面积比方法[J]. 高原气象, 2014, 33(3): 658-665.