Please wait a minute...
高级检索
高原气象  2018, Vol. 37 Issue (5): 1161-1176    DOI: 10.7522/j.issn.1000-0534.2018.00027
论文     
青藏高原不同海拔地表感热的年际和年代际变化特征及其成因分析
于威1,2, 刘屹岷2,3, 杨修群1, 吴国雄2,3
1. 南京大学大气科学学院/中国气象局-南京大学气候预测研究联合实验室, 江苏 南京 210023;
2. 中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室, 北京 100029;
3. 中国科学院大学, 北京 100049
The Interannual and Decadal Variation Characteristics of the Surface Sensible Heating at Different Elevations over the Qinghai-Tibetan Plateau and Attribution Analysis
YU Wei1,2, LIU Yimin2,3, YANG Xiuqun1, WU Guoxiong2,3
1. China Meteorological Administration-Nanjing University(CMA-NJU) Joint Laboratory for Climate Prediction Studies, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, Jiangsu, China;
2. State Key Laboratory of Numerical Modelling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China;
3. University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF  HTML
摘要: 利用1961-2014年中国气象观测站逐日常规资料,分析了在不同季节和不同海拔上,青藏高原地表感热的气候态特征以及热量拖曳系数和密度对地表感热计算的影响,并研究了高原地表感热在年际、年代际以及趋势变化上的时空分布特征;最后定量研究了表面风速与地气温差在年际和年代际时间尺度上对地表感热变化的相对贡献。结果表明,使用实际密度和常热量拖曳系数的总体动力学公式计算的地表感热最为合理;总体来说高原地表感热随着高度上升而增加,春季最大,秋季与冬季最小;空间分布上,春季高原东南部大北部小,夏季南部小北部大。春季年际、年代际地表感热经验正交函数分解第一模态空间型分别具有高原南北反向分布和高原主体与其东北反向分布的特征,夏季与之相似。高原整体而言,20世纪60-70年代末(春季)或70年代初(夏季),地表感热增加,其后至21世纪00年代初地表感热下降,之后又上升。在显著下降的1979-2003年间,春夏两季地表感热变化趋势分布均呈一致性的减弱,其中南部减弱最为显著。平均而言,在年际时间尺度上,表面风速对地表感热的贡献与地气温差对地表感热的贡献大小相当;而在年代际时间尺度上,表面风速对地表感热的贡献大于地气温差对地表感热的贡献。
关键词: 青藏高原地表感热年际年代际变化趋势    
Abstract: Based on the daily regular meteorological observations in the period of 1961-2014 provided by the China Meteorological Administration, the climatological characteristics of the surface sensible heating (SH) over the Qinghai-Tibetan Plateau (QTP) in different seasons and at different elevations have been studied. The impact of the drag coefficient for heat and air density on SH has also been analyzed. Besides, the temporal and spatial distributions of SH over the QTP on different time scales were investigated. Furthermore, the contributions of surface wind speed and ground-air temperature difference to the variation of SH on interannual and decadal time scales were revealed. The results show that the SH calculated by using real density and constant drag coefficient for heat is most reasonable. The SH increases with increasing elevation of the QTP, and the maximum SH scores in spring with the minimum occurs in autumn and winter. The spatial distribution of SH over the QTP is that the southeast (south) part is large (small) while the north part is small (large) in spring (summer). The first leading mode of empirical orthogonal function analyses for spring and summer SH shows an out of phase distribution between south and north on interannual time scale, and between the main body and northeast part on the decadal time scale. Furthermore, SH increases from 1961 to the late (early) 1970s in spring (summer), and then decreases until early 2000s, after that it increases. Besides, the trend of spring and summer SH shows uniform decreasing in the whole QTP with particularly pronounced decreasing in the south part during 1979-2003. The surface wind speed and ground-air temperature difference contribute nearly equal to the variation of SH on the interannual time scale, however the former is larger than the latter on the decadal time scale.
Key words: Qinghai-Tibetan Plateau    surface sensible heating    interannual    decadal    trend
收稿日期: 2017-11-22 出版日期: 2018-10-19
:  P468.0  
基金资助: 国家自然科学基金项目(91437219,91637312,41730963);中国科学院前沿科学重点研究项目(QYZDY-SSW-DQC018);NSFC-广东联合基金(第二期)超级计算科学应用研究专项和国家超级计算广州中心(U1501501)
通讯作者: 刘屹岷(1965-),女,河南信阳人,研究员,主要从事气候动力学和数值模拟研究.E-mail:lym@lasg.iap.ac.cn     E-mail: lym@lasg.iap.ac.cn
作者简介: 于威(1993-),男,江西九江人,博士研究生,主要从事气候变化和模拟研究.E-mail:yuwei@lasg.iap.ac.cn
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
于威
刘屹岷
杨修群
吴国雄

引用本文:

于威, 刘屹岷, 杨修群, 吴国雄. 青藏高原不同海拔地表感热的年际和年代际变化特征及其成因分析[J]. 高原气象, 2018, 37(5): 1161-1176.

YU Wei, LIU Yimin, YANG Xiuqun, WU Guoxiong. The Interannual and Decadal Variation Characteristics of the Surface Sensible Heating at Different Elevations over the Qinghai-Tibetan Plateau and Attribution Analysis. Plateau Meteorology, 2018, 37(5): 1161-1176.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2018.00027        http://www.gyqx.ac.cn/CN/Y2018/V37/I5/1161

Chen L X, Reiter E R, Feng Z Q, 1985. The atmospheric heat source over the Tibetan Plateau:May-August 1979[J]. Mon Wea Rev, 113(10):1771-1790.
Duan A M, Wang M R, Lei Y H, et al, 2013. Trends in summer rainfall over China Associated with the Tibetan Plateau sensible heat source during 1980-2008[J]. J Climate, 26(1):261-275.
Duan A M, Wang M R, Xiao Z X, 2014. Uncertainties in quantitatively estimating the atmospheric heat source over the Tibetan Plateau[J]. Atmos Oceanic Sci Lett, 7(1):28-33.
Duan A M, Wu G X, 2008. Weakening trend in the atmospheric heat source over the Tibetan Plateau during recent decades. Part I:Observations[J]. J Climate, 21(13):3149-3164.
Fan K, Wang H J, Choi Y J, 2008. A physically-based statistical forecast model for the middle-lower reaches of the Yangtze River Valley summer rainfall[J]. China Sci Bull, 53(4):602-609.
Flohn H, 1957. Large-scale aspects of the "summer monsoon" in South and East Asia[J]. J Meteor Soc Japan, 75:180-186. DOI:10.2151/jmsj1923.35A. 0_180.
He H Y, McGinnis J W, Song Z S, et al, 1987. Onset of the Asian summer monsoon in 1979 and the effect of the Tibetan Plateau[J]. Mon Wea Rev, 115(115):1966-1995.
Li C F, Yanai M, 1996. The onset and interannual variability of the Asian summer monsoon in relation to land-sea thermal contrast[J]. J Climate, 9(2):358-375. DOI:10.1175/1520-0442(1996)009<0358:TOAIVO>2.0. CO; 2.
Liu Y M, Hoskins B, Blackburn M, 2007. Impact of Tibetan orography and heating on the summer flow over Asia[J]. J Meteor Soc Japan, 85(7):1-19.
Liu Y M, Wu G X, Hong J L, et al, 2012. Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing:Ⅱ. Change[J]. Climate Dyn, 39(5):1183-1195. DOI:10.1007/s00382-012-1335-y.
Molnar P, Emanuel K A, 1999. Temperature profiles in radiative-convective equilibrium above surfaces at different heights[J]. J Geophys Res, 104(D20):24265-24271.
Qian Y F, Zhang Y, Huang Y Y, et al, 2004. The effects of the thermal anomalies over the Tibetan Plateau and its vicinities on climate variability in China[J]. Adv Atmos Sci, 21(3):369-381.
Wu G X, He B, Duan A M, et al, 2017. Formation and variation of the atmospheric heat source over the Tibetan Plateau and its climate effects[J]. Adv Atmos Sci, 34(10):1169-1184.
Wu G X, Liu Y M, Dong B W, et al, 2012. Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing:I. Formation[J]. Clim Dyn, 39(5):1169-1181. DOI:10.1007/s00382-012-1334-z.
Wu G X, Liu Y M, Wang T M, et al, 2007. The influence of the mechanical and thermal forcing of the Tibetan Plateau on the Asian climate[J]. J Hydrometeorol, 8(4):770-789. DOI:10.1175/JHM609.1.
Wu G X, Zhang Y S, 1998. Tibetan Plateau forcing and timing of the monsoon onset over South Asia and South China Sea[J]. Mon Wea Rev, 126(4):913-927.
Yanai M, Li C F, Song Z S, 1992. Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon[J]. J Meteor Soc Japan, 79(1):319-351.
Yang K, Guo X F, Wu B Y, 2011. Recent trends in surface sensible heat flux on the Tibetan Plateau[J]. Sci China Earth Sci, 54(1):19-28. DOI:10.1007/s11430-010-4036-6.
Yang K, Qin J, Guo X F, et al, 2009. Method development for estimating sensible heat flux over the Tibetan Plateau from CMA Data[J]. J Appl Meteor Climatol, 48(12):2474-2486.
Yang K, Wu H, Qin J, et al, 2014. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle:A review[J]. Global & Planetary Change, 112(1):79-91.
Ye D Z, Wu G X, 1998. The role of the heat source of the Tibetan Plateau in the general circulation[J]. Meteor Atmos Phys, 67(1/4):181-198.
Zar H J, 1999. Biostatistical Analysis, fourth ed[C]. Pearson Education, New Jersey.
Zhu X Y, Liu Y M, Wu G X, 2012. An assessment of summer sensible heat flux on the Tibetan Plateau from eight data sets[J]. Sci China Earth Sci, 55(5):779-786. DOI:10.1007/s11430-012-4379-2.
陈隆勋, 朱乾根, 罗会邦, 等, 1991. 东亚季风[M]. 北京:气象出版社. Chen L X, Zhu Q G, Luo H B, et al, 1991. East Asian Monsoon[M]. Beijing:China Meteorological Press.
陈万隆, 翁笃鸣, 1984. 关于青藏高原感热和潜热旬总量计算方法的初步研究//青藏高原气象科学实验论文集(二)[C]. 北京:科学出版社, 35-45. Chen W L, Wong D M, 1984. A preliminary study on the computational method of 10-day mean sensible heat and latent heat on the Tibetan Plateau. Collected Works of the Qinghai-Xizang Plateau Meteorological Experiment (Series 2)[C]. Beijing:Science Press, 35-45.
李国平, 段廷扬, 巩远发, 2000. 青藏高原西部地区的总体输送系数和地面通量[J]. 科学通报, 45(8):865-869. Li G P, Duan T Y, Gong Y F, 2000. The bulk transfer coefficients and surface fluxes on the western Tibetan Plateau[J]. Chinese Sci Bull, 45(8):865-869.
刘屹岷, 王子谦, 卓海峰, 等, 2017. 夏季亚洲大地形双加热及近对流层顶位涡强迫的激发Ⅱ:伊朗高原-青藏高原感热加热[J]. 中国科学:地球科学, 47:354-366. Liu Y M, Wang Z Q, Zhuo H F, et al, 2017. Two types of summertime heating over Asian large-scale orography and excitation of potential-vorticity forcing Ⅱ. Sensible heating over Tibetan-Iranian Plateau[J]. Sci China Earth Sci, 47:354-366. DOI:10.1007/s11430-016-9016-3.
庞轶舒, 马振峰, 杨淑群, 等, 2017. 盛夏高原季风指数的探讨及其对四川盆地降水的影响[J]. 高原气象, 36(4):886-899. Pang Y S, Ma Z F, Yang S Q, et al, 2017. Discussion of plateau monsoon index and its impact on precipitation in Sichuan Basin in midsummer[J]. Plateau Meteor, 36(4):886-899. DOI:10.7522/j. issn. 1000-0534.2016.00027.
任芝花, 余予, 邹凤玲, 等, 2012. 部分地面要素历史基础气象资料质量检测[J]. 应用气象学报, 23(6):739-747. Ren Z H, Yu Y, Zou F L, et al, 2012. Quality detection of surface historical basic meteorological data[J]. J Appl Meteor Sci, 23(6):739-747.
王慧, 李栋梁, 2010. 卫星遥感结合地面观测资料对中国西北干旱区地表热力输送系数的估算[J]. 大气科学, 34(5):1026-1034. Wang H, Li D L, 2010. Estimation of the surface thermal transfer coefficients over the arid region of Northwest China with the aid of satellite remote sensing an d field observations[J]. Chinese J Atmos Sci, 34(5):1026-1034.
王美蓉, 周顺武, 段安民, 2012. 近30年青藏高原中东部大气热源变化趋势:观测与再分析资料对比[J]. 科学通报, 57(Z1):178-188. Wang M R, Zhou S W, Duan A M, 2012. Trend in the atmospheric heat source over the central and eastern Tibetan Plateau during recent decades:Comparison of observations and reanalysis data[J]. Chinese Sci Bull, 57(Z1):178-188.
王顺久, 2017. 青藏高原积雪变化及其对中国水资源系统影响研究进展[J]. 高原气象, 36(5):1153-1164. Wang S J, 2017. Progresses in variability of snow cover over the Qinghai-Tibetan Plateau and its impact on water resources in China[J]. Plateau Meteor, 36(5):1153-1164. DOI:10.7522/j. issn. 1000-0534.2016.00117.
吴国雄, 李伟平, 郭华, 等, 1997. 青藏高原感热气泵和亚洲夏季风//叶笃正. 赵九章纪念文集[C]. 北京:科学出版社, 116-126. Wu G X, Li W P, Guo H, et al, 1997. Sensible heat driven air-pump over the Tibetan Plateau and its impacts on the Asian summer monsoon//Ye D Z. Essays in Honor Zhao Jiuzhang[C]. Beijing:Chinese Science Press, 116-126.
吴国雄, 卓海峰, 王子谦, 等, 2016. 夏季亚洲大地形双加热及近对流层顶位涡强迫的激发(Ⅰ):青藏高原主体加热[J]. 中国科学:地球科学, 46:1209-1222. Wu G X, Zhuo H F, Wang Z Q, et al, 2016. Two types of summertime heating over the Asian large-scale orography and excitation of potential-vorticity forcing (Ⅰ). Over Tibetan Plateau[J]. Sci China Earth Sci, 46:1209-1222. DOI:10.1007/s11430-016-5328-2.
杨智, 刘志刚, 李娟, 2010. 云南省地气温差时空变化特征分析[J]. 云南大学学报, 32(S1):289-293. Yang Z, Liu Z G, Li J, 2010. The characteristic of temporal and spatial distribution of the differences between ground and air temperature in Yunnan[J]. Journal of Yunnan University, 32(S1):289-293.
叶笃正, 高由禧, 1979. 青藏高原气象学[M]. 北京:科学出版社, 329-337. Ye D Z, Gao Y X, 1979. The Meteorology of the Qinghai-Xizang (Tibet) Plateau[M]. Beijing:Science Press, 329-337.
张文纲, 李述训, 吴通华, 等, 2006. 青藏高原地气温差变化分析[J]. 地理学报, 61(9):899-910. Zhang W G, Li S X, Wu T H, et al, 2006. Changes of the Differences between Ground and Air Temperature over the Qinghai-Xizang Plateau[J]. Acta Geophys Sinica, 61(9):899-910.
张盈盈, 李忠贤, 刘伯奇, 2015. 春季青藏高原表面感热加热的年际变化特征及其对印度夏季风爆发时间的影响[J]. 大气科学, 39(6):1059-1072. Zhang Y Y, Li Z X, Liu B Q, 2015. Interannual variability of surface sensible heating over the Tibetan Plateau in boreal spring and its influence on the onset time of the Indian Summer Monsoon[J]. Chinese J Atmos Sci, 39(6):1059-1072.
张长灿, 李栋梁, 王慧, 等, 2017. 青藏高原春季地表感热特征及其对中国东部夏季雨型的影响[J]. 高原气象, 36(1):13-23. Zhang C C, Li D L, Wang H, et al, 2017. Characteristics of the surface sensible heat on the Qinghai-Xizang Plateau in the spring and its influences on the summertime rainfall pattern over the Eastern China[J]. Plateau Meteor, 36(1):13-23. DOI:10.7522/j. issn. 1000-0534.2016.00028.
周俊前, 刘新, 李伟平, 等, 2016. 青藏高原春季地表感热异常对西北地区东部降水变化的影响[J]. 高原气象, 35(4):845-853. Zhou J Q, Liu X, Li W P, et al, 2016. Relationship between surface sensible heating over the Qinghai-Xizang Plateau and precipitation in the eastern part of Northwest China in spring[J]. Plateau Meteor, 35(4):845-853. DOI:10.7522/j. issn. 1000-0534.2015.00053.
卓嘎, 德吉卓玛, 尼玛吉, 2017. 青藏高原土壤湿度分布特征及其对长江中下游6、7月降水的影响[J]. 高原气象, 36(3):657-666. Zhuo G, Deji Z M, Nima J, 2017. Distribution of soil moisture over the Qinghai-Tibetan Plateau and its effect on the precipitation in June and July over the mid-lower reaches of Yangtze River Basin[J]. Plateau Meteor, 36(3):657-666. DOI:10.7522/j. issn. 1000-0534.2016.00073.
[1] 慕熙昱, 徐琪, 周林义, 陶星, 黄安宁. 基于AWOS数据的南京禄口机场低能见度特征统计研究[J]. 高原气象, 2018, 37(4): 1129-1142.
[2] 杨淑华, 吴通华, 李韧, 朱小凡, 王蔚华, 余文君, 秦艳慧, 郝君明. 青藏高原近地表土壤冻融状况的时空变化特征[J]. 高原气象, 2018, 37(1): 43-53.
[3] 邓国卫, 孙俊, 阮贵宾, 马振锋. 四川省暴雨洪涝灾情特征及主汛期环流背景分析[J]. 高原气象, 2017, 36(6): 1521-1532.
[4] 王毅, 何立富, 代刊, 郭云谦. 集合敏感性方法在高原涡和西南涡引发暴雨过程中的应用[J]. 高原气象, 2017, 36(5): 1245-1256.
[5] 欧阳琳, 阳坤, 秦军, 王岩, 卢麾. 喜马拉雅山区降水研究进展与展望[J]. 高原气象, 2017, 36(5): 1165-1175.
[6] 王希强, 陈仁升, 刘俊峰. 气候变化背景下祁连山区负积温时空变化特征分析[J]. 高原气象, 2017, 36(5): 1267-1275.
[7] 白晓平, 王式功, 赵璐, 尚可政, 刘晓潭, 明如军. 西北地区东部短时强降水概念模型[J]. 高原气象, 2016, 35(5): 1248-1256.
[8] 陈锋, 董美莹, 冀春晓. 综合分析法在复杂地形气温精细格点化中的应用[J]. 高原气象, 2016, 35(5): 1376-1388.
[9] 王田野, 吴通华, 李韧, 谢昌卫, 邹德富, 秦艳慧, 余文君, 王蔚华. 两种再分析月平均气温资料在蒙古国的适用性评估[J]. 高原气象, 2016, 35(3): 651-661.
[10] 除多, 杨勇, 罗布坚参, 边巴次仁. MERRA再分析地面气温产品在青藏高原的适用性分析[J]. 高原气象, 2016, 35(2): 337-350.
[11] 李江林, 余晔, 刘川. 青藏高原与黄土高原过渡区雷暴活动特征及东亚夏季风的影响[J]. 高原气象, 2015, 34(6): 1575-1583.
[12] 秦艳慧, 吴通华, 李韧, 谢昌卫, 乔永平, 陈浩, 邹德富, 张乐乐. ERA-Interim地表温度资料在青藏高原多年冻土区的适用性[J]. 高原气象, 2015, 34(3): 666-675.
[13] 王海军, 闫荞荞, 向芬, 潘勐. 逐时气温质量控制中界限值检查算法的设计[J]. , 2014, 33(6): 1722-1729.
[14] 赵强, 严华生. 太平洋—印度洋海温异常对陕西夏季降水年际变化的影响[J]. , 2014, 33(6): 1608-1617.
[15] 唐红玉, 李锡福, 李栋梁. 青藏高原春季积雪多、少年中低层环流对比分析[J]. , 2014, 33(5): 1190-1196.