Please wait a minute...
高级检索
高原气象  2018, Vol. 37 Issue (5): 1388-1401    DOI: 10.7522/j.issn.1000-0534.2018.00034
论文     
冬奥会小海坨山赛区边界层风场大涡模拟研究
刘郁珏1, 苗世光1, 胡非2, 刘玉宝3
1. 中国气象局北京城市气象研究所, 北京 100089;
2. 中国科学院大气物理研究所, 大气边界层物理和大气化学国家重点实验室(LAPC), 北京 100029;
3. 美国国家大气研究中心(NCAR), Boulder, Colorado, USA 80307
Large Eddy Simulation of Flow Field over the Xiaohaituo Mountain Division for the 24th Winter Olympic Games
LIU Yujue1, MIAO Shiguang1, HU Fei2, LIU Yubao3
1. Institute of Urban Meteorology, China Meteorology Administration, Beijing 100089, China;
2. State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China;
3. Research Application Laboratory, National Center for Atmospheric Research, Boulder, Colorado 80307, America
 全文: PDF  HTML
摘要: 北京市延庆区小海坨山将承担2022年第24届冬季奥运会部分高山滑雪、高山速降等室外赛事。由于室外赛事对近地面风场有着极其严格要求,需要提供百米内分辨率风预报产品。目前广泛使用的高分辨率(>1 km)中尺度模式尚不能满足这一预报需求。本文基于中尺度气象模式(WRF)的大涡模拟(LES)功能,针对冬奥小海坨山地区构建在线耦合中-微尺度WRF-LES模式系统,采用四重单向嵌套将水平分辨率从中尺度1 km降至微尺度37 m,对发生在该地区2017年1月13日晴天大风个例开展边界层风场的精细模拟。结合观测,通过设计模式水平、垂直、地形分辨率及边界层方案敏感性试验,检验和评估了WRF-LES作为真实大气模拟工具在复杂地形区域的适用性。结果表明,由于LES能解析大气湍流中部分湍涡能量,相比普通中尺度模式WRF,百米或更高分辨率WRF-LES能捕捉更多大气小尺度运动特征,刻画出局地流场结构,获得更精细、准确的近地面风场信息。为实现精确模拟,模式需引入与水平分辨率相匹配的高分辨率地形高程数据,结合计算资源能力设置垂直网格距。模拟结果表明WRF-LES对复杂山地近地面风场具有超高分辨率模拟应用的潜力和价值,表现出较好的预报能力,可为冬奥会精细气象服务提供技术支持。
关键词: 中尺度模式大涡模拟复杂地形大气边界层冬奥会    
Abstract: Competitions for luge, bobsleigh and alpine skiing of the 24th Winter Olympic Games in February 2022 will be held in Xiaohaituo Mountain area northwest of Beijing, 90 kilometers away from the downtown. The outdoor events are very strict on the near-surface wind fields. Therefore, it is necessary to provide wind field prediction within 100 meters resolution. At present, the widely used mesoscale models, limited by their grid resolution (>1 km), cannot meet the needs. This paper described a multi-scale weather modeling system, WRF-LES, which employs large-eddy simulation (LES) with the WRF model. The system was employed to simulate real-world conditions of a typical clear day with strong winds over Xiaohaituo mountain area. With four nested domains, the horizontal grid spacing is decreased from 1 km to 37 m. Through a group of sensitivity tests of horizontal, vertical, terrain resolution and boundary layer schemes, the applicability of WRF-LES has been evaluated and tested against in-situ observation from MOUNTOAM (Mountain Terrain Atmospheric Observations and Modeling) filed campaign. Compared to ordinary mesoscale model, 100 meters or higher resolution WRF-LES results were found to capture more microscale flows owing to its explicit resolving of large atmospheric turbulence eddies, and obtain wind field flow more resemble the real atmosphere. For accurate simulation, the topographygraphic data should be matched with the model horizontal resolution, and the vertical grid spacing needs to be carefully set. For this case, WRF-LES has the potential and value for the ultra-high-resolution simulation of the near-surface wind field over complex mountainous area. It shows high forecasting ability, and can provide technical support for fine weather service in Winter Olympic Games.
Key words: Mesoscale model    large eddy simulation (LES)    complex terrain    atmospheric boundary layer    winter olympic games
收稿日期: 2017-12-19 出版日期: 2018-10-19
:  P404  
基金资助: 国家自然科学基金项目(41705006,11472272);北京市科技计划项目(D171100000717003);北京市自然科学基金项目(8184074)
作者简介: 刘郁珏(1988-),女,湖南岳阳人,博士研究生,主要从事大气边界层物理、大气湍流的研究.E-mail:yjliu@ium.cn
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘郁珏
苗世光
胡非
刘玉宝

引用本文:

刘郁珏, 苗世光, 胡非, 刘玉宝. 冬奥会小海坨山赛区边界层风场大涡模拟研究[J]. 高原气象, 2018, 37(5): 1388-1401.

LIU Yujue, MIAO Shiguang, HU Fei, LIU Yubao. Large Eddy Simulation of Flow Field over the Xiaohaituo Mountain Division for the 24th Winter Olympic Games. Plateau Meteorology, 2018, 37(5): 1388-1401.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2018.00034        http://www.gyqx.ac.cn/CN/Y2018/V37/I5/1388

Beare R J, Macvean M K, Holtslag A A M, et al, 2006. An intercomparison of large-eddy simulations of the stable boundary layer[J]. Bound-Lay Meteor, 118(2):247-272.
Chow K F, Street R L, Xue M, et al, 2005. Explicit filtering and reconstruction turbulence modeling for large-eddy simulation of neutral boundary layer flow[J]. J Atmos Sci, 62(7):2058-2077.
Chow F K, Wekker S F J D, Snyder B J, 2013. Mountain weather research and forecasting[M]. Netherlands:Springer Netherlands.
Deardorff J W, 2013. Numerical investigation of neutral and unstable planetary boundary layers[J]. J Atmos Sci, 29(1):91-115.
Lilly D K, 1976. The representation of small-scale turbulence in numerical simulation experiments[M]. In:Proceedings IBM scientific computing symposium on environmental sciences, 14-16 Nov, Yorktown Heights, NY.
Liu Y, Warner T, Liu Y, et al, 2011. Simultaneous nested modeling from the synoptic scale to the LES scale for wind energy applications[J]. Journal of Wind Engineering & Industrial Aerodynamics, 99(4):308-319.
Mason P J, Derbyshire S H, 1990. Large-eddy simulation of the stably-stratified atmospheric boundary layer[J]. Bound-Lay Meteor, 53(1):117-162.
Milovac J, Branch O L, Bauer H S, et al, 2016. High-resolution WRF model Simulations of critical land surface-atmosphere interactions Within Arid and Temperate Climates (WRFCLIM)[M]. New York:High Performance Computing in Science and Engineering.
Mirocha J D, Lundquist J K, Kosović B, 2010. Implementation of a nonlinear subfilter turbulence stress model for large-eddy simulation in the advanced research WRF model[J]. Mon Wea Rev, 138(11):4212-4228.
Moeng C H, Sullivan P P, 1994. A comparison of shear-and buoyancy-driven planetary boundary layer flows[J]. J Atmos Sci, 51(7):999-1022.
Moeng C H, Dudhia J, Klemp J, et al, 2007. Examining two-way grid nesting for large eddy simulation of the PBL using the WRF model[J]. Mon Wea Rev, 135(6):2295-2311.
Portéagel F, Meneveau C, Parlange M B, 2000. A scale-dependent dynamic model for large-eddy simulation:Application to a neutral atmospheric boundary layer[J]. Journal of Fluid Mechanics, 415(1):261-284.
Rai R K, Berg L K, Kosović B, et al, 2017. Comparison of measured and numerically simulated turbulence statistics in a convective boundary layer over complex terrain[J]. Bound-Lay Meteor, 163(1):69-89.
Shin H H, Hong S Y, 2011. Intercomparison of planetary boundary-layer parametrizations in the WRF model for a single day from CASES-99[J]. Bound-Lay Meteor, 139(2):261-281.
Smagorinsky J, 1963. General circulation experiments with the primitive equations[J]. Mon Wea Rev, 91(3):99-164.
Skamarock W C, Klemp J B, 2008. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications[J]. Journal of Computational Physics, 227(7):3465-3485.
Stull R B, 1988. An introduction to boundary layer meteorology[M]. Kluwer Academic Publishers, Dordrecht.
Talbot C, Bouzeid E, Smith J, 2013. Nested mesoscale large-eddy simulations with WRF:performance in real test cases[J]. J Hydrometeor, 13(5):1421-1441.
Xue L, Chu X, Rasmussen R, et al, 2014. A case study of radar observations and WRF LES simulations of the impact of ground-based glaciogenic seeding on orographic clouds and precipitation. Part Ⅱ:AgI dispersion and seeding signals simulated by WRF[J]. J Appl Meteor Climatol, 53(10):2264-2286.
程雪玲, 胡非, 曾庆存, 2015. 复杂地形风场的精细数值模拟[J]. 气候与环境研究, 20(1):1-10. Cheng X L, Hu F, Zeng Q C, et al, 2015. Refined numerical simulation of complex terrain flow field[J]. Climatic Environ Res, 20(1):1-10.
崔桂香, 张兆顺, 许春晓, 等, 2013. 城市大气环境的大涡模拟研究进展[J]. 力学进展, 43(3):295-328. Cui G X, Zhang Z S, Xu C X, et al, 2013. Research advances in large eddy simulation of urban atmospheric environment[J]. Advances in Mechanics, 43(3):295-328.
胡非, 1995. 湍流、间歇性与大气边界层[M]. 北京:科学出版社, Hu F, 1995. The intermittent turbulence and atmospheric boundary layer[M]. Beijing:Science Press.
李磊, 张立杰, 张宁, 等, 2010. FLUENT在复杂地形风场精细模拟中的应用研究[J]. 高原气象, 29(3):621-628. Li L, Zhang L J, Zhang L, et al, 2010. Application of FLUENT on the fine scale simulation of the wind field over complex terrain[J]. Plateau Meteor, 29(3):621-628.
林文实, 黄美元, 1998. 积云参数化方案研究的现状[J]. 热带气象学报, (4):374-379. Lin W S, Hang M Y, 1998. The state about the study in cumulus parameterization[J]. J Trop Meteor, (4):374-379.
刘树华, 刘振鑫, 郑辉, 等, 2013. 多尺度大气边界层与陆面物理过程模式的研究进展[J]. 中国科学:物理学 力学 天文学, 43(10):1332-1355. Liu S H, Liu Z X, Zheng H, et al, 2013. Multi-scale atmospheric boundary-layer and land surface physics process models[J]. Scientia Sinica, 43(10):1332-1355.
蒋维楣, 苗世光, 2004. 大涡模拟与大气边界层研究 30年回顾与展望[J]. 自然科学进展, 14(1):11-19. Jiang W M, Miao S G, 2004. Large eddy simulation and atmospheric boundary layer-Review and prospect in the past 30 years[J]. Progress in Natural Science, 14(1):11-19.
孙学金, 李岩, 张燕鸿, 等, 2017. 基于WRF-LES的干旱湖区近地面风场模拟与敏感性研究[J]. 高原气象, 36(3):835-844. Sun X J, Li Y, Zhang Y H, et al, 2017. Near-surface wind wimulationb over acrid lake area and sensitivity studies using the WRF-LES[J]. Plateau Meteor, 36(3):835-844. DOI:10.7522/j. issn. 1000-0534.2016.00058.
杨玉华, 刘长海, Jimy Dudhia, 等, 2016. 基于大涡模拟对两类典型边界层参数化方案的评估分析[J]. 高原气象, 35(1):172-180. Yang Y H, Liu C H, Dudhia J, et al, 2016. Evaluation of two typical PBL parameterization schemes based on large-eddy simulation result[J]. Plateau Meteor, 35(1):172-180. DOI:10.7522/j. issn. 1000-0534.2014.00138.
张宁, 蒋维楣, 2006. 建筑物对大气污染物扩散影响的大涡模拟[J]. 大气科学, 30(2):212-220. Zhang N, Jiang W M, 2006. A large eddy simulation on the effect of building on atmospheric pollutant dispersion[J]. Chinese J Atmos Sci, 30(2):212-220.
张亦洲, 苗世光, 李青春, 等, 2017. 北京城市下垫面对雾影响的数值模拟研究[J]. 地球物理学报, 60(1):22-36. Zhang Y Z, Miao S G, Li Q C, et al, 2017. Numerical simulation of the impact of urban underlying surface on fog in Beijing[J]. Chinese Journal of Geophysics, 60(1):22-36.
张兆顺, 崔桂香, 许春晓, 2005. 湍流理论与模拟[M]. 北京:清华大学出版社. Zhang Z S, Cui G X, Xu C X, 2005. Theory and modeling of turbulence[M]. Beijing:Tsinghua University Press.
郑亦佳, 刘树华, 缪育聪, 等, 2016. YSU边界层参数化方案中不同地形订正方法对地面风速及温度模拟的影响[J]. 地球物理学报, 59(3):803-815. Zheng Y J, Liu S H, Miao Y C, et al, 2016. Effects of different topographygraphic correction methods on the simulation of surface wind speed and temperature in parameterization scheme of the YSU boundary layer[J]. Chinese Journal of Geophysics, 59(3):803-815.
左全, 张庆红, 2016. 大涡模拟在华北地区一次冬季辐射雾过程中的应用[J]. 北京大学学报(自然科学版), 52(5):819-828. Zuo Q, Zhang Q H, 2016. Application of large eddy simulation for a winter radiation fog event in north China[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 52(5):819-828.
[1] 李宏毅, 肖子牛, 朱玉祥. 藏东南地区草地下垫面湍流通量和辐射平衡各分量的变化特征[J]. 高原气象, 2018, 37(4): 923-935.
[2] 严晓强, 胡泽勇, 孙根厚, 谢志鹏. 那曲高寒草地上四种地表通量计算方法的对比[J]. 高原气象, 2018, 37(2): 358-370.
[3] 苏东生, 胡秀清, 文莉娟, 赵林, 李照国. 青海湖热力状况对气候变化响应的数值研究[J]. 高原气象, 2018, 37(2): 394-405.
[4] 李宏毅, 肖子牛, 朱玉祥. 藏东南草地下垫面地气通量交换日变化的数值模拟[J]. 高原气象, 2018, 37(2): 443-454.
[5] 高冠龙, 冯起, 张小由, 鱼腾飞. 黑河下游影响荒漠河岸胡杨林蒸腾的冠层与大气耦合分析[J]. 高原气象, 2018, 37(1): 234-239.
[6] 高冠龙, 冯起, 张小由, 鱼腾飞. 蒸散发模型结合微气象数据模拟陆面蒸散发研究进展[J]. 高原气象, 2017, 36(6): 1630-1637.
[7] 许启慧, 范引琪, 井元元, 杜康云, 张金龙, 刘金平. 1972—2013年河北省大气环境容量的气候变化特征分析[J]. 高原气象, 2017, 36(6): 1682-1692.
[8] 陈丽晶, 张镭, 梁捷宁, 周旭. 半干旱区不同下垫面大气湍流通量比较分析[J]. 高原气象, 2017, 36(5): 1325-1335.
[9] 李晓霞, 黄涛, 王兴, 梁东升. 兰州新区近地层风场时空特征分析[J]. 高原气象, 2017, 36(4): 1001-1009.
[10] 高世仰, 张杰, 罗琦. 青藏高原非均匀下垫面热力输送系数的估算[J]. 高原气象, 2017, 36(3): 596-609.
[11] 孙少波, 陈报章, 车涛, 张慧芳, 陈婧, 车明亮, 林晓凤, 郭立峰. 青藏高原季节性冻土湿度模拟及参数优化——以黑河上游为例[J]. 高原气象, 2017, 36(3): 643-656.
[12] 张新科, 陈晋北, 余晔, 赵素平, 贾伟. 雷暴系统影响下的黄土高原塬区微气象特征研究[J]. 高原气象, 2017, 36(2): 384-394.
[13] 贾东于, 文军, 马耀明, 刘蓉, 王欣, 周娟, 陈金雷. 植被对黄河源区水热交换影响的研究[J]. 高原气象, 2017, 36(2): 424-435.
[14] 李怀香, 刘绍民, 施生锦, 徐自为, 朱忠礼. 国产光学型大孔径闪烁仪的技术性能分析[J]. 高原气象, 2017, 36(2): 575-585.
[15] 徐安伦, 李建, 彭浩, 孙绩华. 洱海湖滨农田下垫面大口径闪烁仪与涡动相关仪测量的湍流热通量对比分析[J]. 高原气象, 2017, 36(1): 98-106.