Please wait a minute...
高级检索
高原气象  2018, Vol. 37 Issue (4): 994-1001    DOI: 10.7522/j.issn.1000-0534.2018.00055
论文     
北疆暴雪发生条件的卫星遥感监测
刘崧1,2, 黄富祥2,3, 杨莲梅4, 韩爽爽1
1. 中国地质大学地球科学与资源学院, 北京 100083;
2. 国家卫星气象中心, 北京 100081;
3. 中国气象局中国遥感卫星辐射测量和定标重点开放实验室, 北京 100081;
4. 中国气象局乌鲁木齐沙漠气象研究所, 新疆 乌鲁木齐 830002
Monitoring of Conditions for Heavy Snowstorm in Northern Xinjiang Using Satellite Remote Sensing Data
LIU Song1,2, HUANG Fuxiang2,3, YANG Lianmei4, HAN Shuangshuang1
1. School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China;
2. National Satellite Meteorological Center, Beijing 100081, China;
3. Key Laboratory of Radiometric and Validation for Environmental Satellites, China Meteorological Administration, Beijing 100081, China;
4. Institute of Desert and Meteorology, China Meteorological Administration, Urumqi 830002, Xinjiang, China
 全文: PDF 
摘要: 利用大气红外探测器(AIRS)大气温度和水汽两种遥感产品,结合拉格朗日混合单粒子轨道模型(HYSPLIT)后向轨迹分析方法,对乌鲁木齐地区2015年12月10-12日和2016年3月2-3日两次暴雪天气冷、暖气团及水汽的来源地、输送路径进行监测分析,并对冬季和春季暴雪发生条件、降雪强度差异进行了对比研究。结果表明:(1)北疆地区暴雪天气是冷、暖气团与水汽条件配合的产物。(2)在这两次暴雪过程中,水汽主要来自西部黑海、里海、咸海、巴尔喀什湖,以及南部阿拉伯海等地;冷气团主要来自北欧、挪威海-巴伦支海、西西伯利亚以及伊朗高原等地;暖气团的来源和输送路径一般与水汽相同或紧密相关。(3)2015年12月10-12日降雪过程是北疆创纪录的一次超强暴雪,此次降雪天气中冷气团来自挪威海-巴伦支海、北欧和伊朗高原等地,暖气团和水汽来自黑海-里海一带。在降雪过程中,来自阿拉伯海的充沛水汽源源不断进入,是导致此次降雪天气强度空前的重要原因。(4)2016年3月2-3日是一次较弱的春季降雪过程,冷气团来自北欧-西西伯利亚地区,暖气团和水汽则分别来自北疆当地和巴尔喀什湖附近,降雪过程中由于缺乏后续水汽补充,导致降雪持续时间较短、强度较弱。(5)对比两次降雪过程可见,降雪过程中有无持续充足水汽补充,是决定降雪持续时间和降雪强度的主要因素。
关键词: 暴雪水汽AIRS遥感数据HYSPLIT后向轨迹追踪    
Abstract: Based on AIRS remote sensing datasets of air temperature and total column water vapor and the method of HYSPLIT backward trajectory analysis, the sources and transporting paths of various meteorological elements of two heavy snow processes in Urumqi during 10-12 December 2015 and 2-3 March 2016 were monitored and analyzed, which including cold air, warm air and water vapor, the differences between conditions and intensities of snowfall in winter and spring were also studied. The results show that:(1) Snowstorm in northern Xinjiang is an outcome of interaction of cold air, warm air and water vapor. (2) During two snowstorm processes, the transfer of water vapor has five sources of the Black Sea, the Caspian Sea, the Aral Sea, the Balkhash Lake and the Arabia Sea, the cold air mainly comes from the northern Europe, the Norwegian Sea, the Barents Sea and the Iranian Plateau, the sources and transporting paths of warm air and water vapor are generally same or closely related. (3) The snowstorm during 10-12 December 2015 is a record strong snowstorm process, the cold air of this process mainly comes from the northern Europe, the Norwegian Sea and the Iranian Plateau, the warm air and water vapor both come from the Black Sea and the Caspian Sea. The transportation of water vapor from the Arabia Sea is an important cause of torrential storm. (4) The snowfall during 2-3 March 2016 is a weak snowfall process in spring, the cold air of this process mainly comes from the regions of Nordic and West Siberia, the warm air mass and water vapor comes from the Northern Xinjiang and the Balkhash Lake respectively. Due to the lack of continuous water vapor supplement, the snowfall is short and weak. (5) By comparing the two different snowfall processes, the abundant and continuous water vapor is a main factor that determines the duration and intensity of snowfall.
Key words: Snowstorm    water vapor    AIRS remote sensing data    HYSPLIT backward trajectory tracking
收稿日期: 2018-03-01 出版日期: 2018-08-22
:  P407.6  
基金资助: 国家自然科学基金项目(41275035,41675031)
通讯作者: 黄富祥(1967-),男,湖北蕲春人,研究员,主要从事卫星臭氧遥感、卫星闪电探测、卫星遥感应用,全球气候变化等方面的研究.E-mail:huangfx@cma.gov.cn     E-mail: huangfx@cma.gov.cn
作者简介: 刘崧(1993-),男,山东无棣人,硕士研究生,主要从事卫星遥感应用研究.E-mail:lius2016@cugb.edu.cn
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘崧
黄富祥
杨莲梅
韩爽爽

引用本文:

刘崧, 黄富祥, 杨莲梅, 韩爽爽. 北疆暴雪发生条件的卫星遥感监测[J]. 高原气象, 2018, 37(4): 994-1001.

LIU Song, HUANG Fuxiang, YANG Lianmei, HAN Shuangshuang. Monitoring of Conditions for Heavy Snowstorm in Northern Xinjiang Using Satellite Remote Sensing Data. Plateau Meteorology, 2018, 37(4): 994-1001.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2018.00055        http://www.gyqx.ac.cn/CN/Y2018/V37/I4/994

Arai K, 2012. Method for water vapor profile retievals by means of minimizing difference between estimated and actual brightness temperatures derived from airs data and radiative transfer model[J]. International Journal of Advanced Computer Science & Applications, 3(12):145-148. DOI:10.14569/IJACSA. 2012.031223.
Divakarla M G, Barnet C D, Goldberg M D, et al, 2006. Validation of atmospheric infrared sounder temperature and water vapor retrievals with matched radiosonde measurements and forecasts[J]. J Geophys Res, 111(D9):9-15. DOI:10.1029/2005JD006116.
Draxler R R, Stunder B, Rolph G, et al, 1999. HYSPLIT4-users's guide[M]. US Department of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Air Resources Laboratory.
Goldberg M D, Qu Y, Mcmillin L M, et al, 2003. AIRS near-real-time products and algorithms in support of operational numerical weather prediction[J]. IEEE Trans Geosci Remote Sens, 41(2):379-389. DOI:10.1109/TGRS. 2002.808307.
Monahan K P, Pan L L, Mcdonald A J, et al, 2007. Validation of AIRS v4 ozone profiles in the UTLS using ozonesondes from Lauder, NZ and Boulder, USA[J]. J Geophys Res, 112(D17):259-262. DOI:10.1029/2006JD008181.
刘晶, 李娜, 陈春艳, 2018. 新疆北部一次暖区暴雪过程锋面结构及中尺度云团分析[J]. 高原气象, 37(1):158-166. Liu J, Li N, Chen C Y, 2018. The frontal structure and analysis on mesoscale cloud characteristic during a warm zone blizzard process in north Xinjiang[J]. Plateau Meteor, 37(1):158-166. DOI:10.7522/j. issn. 1000-0534.2017.00008.
李如琦, 唐冶, 肉孜·阿基, 2015.2010年新疆北部暴雪异常的环流和水汽特征分析[J]. 高原气象, 34(1):155-162. Li R Q, Tang Y, Rouzi A, 2015. Atmospheric circulation and water vapor characteristics of snowstorm anomalies in northern Xinjiang in 2010[J]. Plateau Meteor, 34(1):155-162. DOI:10.7522/j. issn. 1000-0534.2013.00163.
牟欢, 闵月, 洪月, 等, 2017.2016年3月北疆一次暴雪天气过程诊断分析[J]. 沙漠与绿洲气象, 11(6):26-33. Mo H, Min Y, Hong Y, et al, 2017. Diagnostic analysis of a snowstorm process in northern Xinjiang in March 2016[J]. Desert Oasis Meteor, 11(6):26-33. DOI:10.12057/j. issn. 1002-0799.2017.06.004.
许婷婷, 张云惠, 于碧馨, 等, 2017.2015年12月乌鲁木齐极端暴雪成因分析[J]. 沙漠与绿洲气象, 11(5):23-29. Xu T T, Zhang Y H, Yu B X, et al, 2017. Analysis of extreme blizzard in December 2015 in Urumqi[J]. Desert Oasis Meteor, 11(5):23-29. DOI:10.12057/j. issn. 1002-0799.2017.05.004.
杨莲梅, 刘雯, 2016. 新疆北部持续性暴雪过程成因分析[J]. 高原气象, 35(2):507-519. Yang L M, Liu W, 2016. Cause analysis of persistent heavy snow processes in the Northern Xinjiang[J]. Plateau Meteor, 35(2):507-519. DOI:10.7522/j. issn. 1000-0534.2014.00161.
张俊兰, 崔彩霞, 陈春艳, 2013. 北疆典型暴雪天气的水汽特征研究[J]. 高原气象, 32(4):1115-1125. Zhang J L, Cui C X, Chen C Y, 2013. Study on water vapor characteristic of typical heavy snowstorm case in northern Xinjiang[J]. Plateau Meteor, 32(4):1115-1125. DOI:10.7522/j. issn. 1000-0534.2012.00105.
[1] 潘晓, 傅云飞. 夏季青藏高原深厚及浅薄降水云气候特征分析[J]. 高原气象, 2015, 34(5): 1191-1203.
[2] 官莉, 李俊. 大气遥感辐射传输模式的一种有效的Jacobian算法[J]. 高原气象, 2008, 27(1): 148-152.
img

QQ群聊

img

官方微信