Please wait a minute...
高级检索
高原气象  2019, Vol. 38 Issue (2): 227-236    DOI: 10.7522/j.issn.1000-0534.2018.00080
论文     
全球变暖背景下青藏高原夏季大气中水汽含量的变化特征
常姝婷, 刘玉芝, 华珊, 贾瑞
半干旱气候变化教育部重点实验室/兰州大学大气科学学院, 甘肃 兰州 730000
Characteristics of Atmospheric Water Vapor over the Qinghai-Tibetan Plateau in Summer with Global Warming
CHANG Shuting, LIU Yuzhi, HUA Shan, JIA Rui
Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, Lanzhou University, Lanzhou 730000, Gansu, China
 全文: PDF(9792 KB)   HTML ( 11)
摘要: 利用中国气象局提供的0.5°×0.5°降水和温度的日值资料,联合ERA-Interim、MERRA2(second Modern-Era Retrospective analysis for Research and Applications)和JRA-55(Japanese 55-year Reanalysis)再分析资料以及全球陆面数据同化系统(Global Land surface Data Asimilation System,GLDAS-2.0)资料,研究了全球变暖背景下青藏高原夏季地表气温及降水的变化特征,以及该地区大气中水汽含量及水汽输送特征。结果表明,1979-1998年期间,高原的地表气温呈增加趋势,降水呈减少趋势;而在全球增温减缓期间(1999-2010年),地表气温及降水较1979-1998年期间呈现更为显著的增加趋势。在青藏高原上空,大气中水汽含量在1979-2010年间整体呈增加趋势;然而,进一步分析表明,在此期间由外界向高原输送的水汽逐年降低,尤其在1998年后,由于西南季风强度的大幅减弱,使得外界向高原的净水汽输送量减少得更为显著;青藏高原地表蒸散量的分析表明,自1998年后,高原地表的蒸散量显著增加,成为高原地区大气中水汽增加的主要原因。
关键词: 青藏高原全球变暖大气水汽水汽净输送下垫面蒸散    
Abstract: The Qinghai-Tibetan Plateau (QTP), which is aptly called as the "Asian water tower", acknowledged as the water source of the rest region in China, may profoundly have an significant impact on the regional and global atmospheric water vapor cycle, climate change and incidents of drought, disastrous weather and climate evolution in China and of the world, as a whole. In this paper, combined with the reanalysis data of ERA-Interim, MERRA2 (second Modern-Era Retrospective analysis for Research and Applications), JRA-55 (Japanese 55-year Reanalysis), and the GLDAS-2. 0 (Global Land surface Data Asimilation System), the precipitation and temperature daily grid data from CMA (China Meteorological Administration) were used to investigate the characteristics of spacial distribution and variation tendency of precipitation, temperature, atmospheric water vapor, and the atmospheric water vapor transport in summer over the QTP in summer during the period of 1979-2010 in this study. The results showed that the surface temperature over the QTP had increasing trend while the precipitation showed a decreasing trend during the period of 1979-1998. Otherwise, during the period of global warming deceleration (1999-2010), the surface temperature and the precipitation showed a more significant increasing trend than those during the period of 1979-1998. The atmospheric water vapor over the QTP showed an increasing trend during the period of 1979-2010. On the contrary, based on the further analysis, the inward transport of atmospheric water vapor showed a decreasing trend year by year. Especially, after the year of 1998, due to the sharp weakening of the intensity of southwest monsoon, the net inward atmospheric water vapor transport was reduced more significantly in this period. The results indicated that the surface evapotranspiration over the plateau showed an increasing trend significantly, which may be a major cause of the increased atmospheric water vapor over the QTP.
Key words: Global warming    Qinghai-Tibetan Plateau (QTP)    atmosphere water vapor    net water vapor transport    surface evapotranspiration
收稿日期: 2018-03-20 出版日期: 2019-04-22
:  P467  
基金资助: 国家自然科学基金项目(91737101,41475095)
通讯作者: 刘玉芝(1979-),女,新疆奇台人,教授,主要从事大气物理与大气环境研究.E-mail:liuyzh@lzu.edu.cn     E-mail: liuyzh@lzu.edu.cn
作者简介: 常姝婷(1995-),女,辽宁凌海人,硕士研究生,主要从事大气环境与大气物理.E-mail:changsht16@lzu.edu.cn
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
常姝婷
刘玉芝
华珊
贾瑞

引用本文:

常姝婷, 刘玉芝, 华珊, 贾瑞. 全球变暖背景下青藏高原夏季大气中水汽含量的变化特征[J]. 高原气象, 2019, 38(2): 227-236.

CHANG Shuting, LIU Yuzhi, HUA Shan, JIA Rui. Characteristics of Atmospheric Water Vapor over the Qinghai-Tibetan Plateau in Summer with Global Warming. Plateau Meteorology, 2019, 38(2): 227-236.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2018.00080        http://www.gyqx.ac.cn/CN/Y2019/V38/I2/227

Chen B, Xu X, Yang S, et al, 2012. On the origin and destination of atmospheric moisture and air mass over the Tibetan Plateau[J]. Theoretical & Applied Climatology, 110 (3):423-435. DOI:10.1007/s00704-012-0641-y.
Drumond A, Nieto R, Gimeno L, 2011. Sources of moisture for China and their variations during drier and wetter conditions in 2000-2004:a Lagrangian approach[J]. Climate Research, 50:215-225. DOI:10.3354/cr01043.
Feng L, Zhou T, 2012. Water vapor transport for summer precipitation over the Tibetan Plateau:Multidata set analysis[J]. Journal of Geophysical Research Atmospheres, 117 (D20):20114. DOI:10.1029/2011JD017012.
Hall A, Manabe S, 1997. The role of water vapor feedback in unperturbed climate variability and global warming[J]. Journal of Climate, 12 (8):2327-2346. DOI:10.1175/1520-0442 (1999)012<2327:TROWVF>2.0. CO; 2.
IPCC, 2013. Climate Change 2013:The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, U. K.
Lin H, You Q, Zhang Y, et al, 2016. Impact of large scale circulation on the water vapour balance of the Tibetan Plateau in summer[J]. International Journal of Climatology, 36 (13):4213-4221. DOI:10.1002/joc. 4626.
Lu N, Qin J, Gao Y, et al, 2015. Trends and variability in atmospheric precipitable water over the Tibetan Plateau for 2000-2010[J]. International Journal of Climatology, 35 (7):1394-1404. DOI:10.1002/joc. 4064.
Simmonds I, Bi D, Hope P, 1999. Atmospheric water vapor fflux and its association with rainfall over China in summer[J]. Journal of Climate, 12:1353-1367.
Solomon S, Rosenlof K H, Portmann R W, et al, 2010. Contributions of stratospheric water vapor to decadal changes in the rate of global warming[J]. Science, 327 (5970):1219-1223. DOI:10.1126/science. 1182488.
Song J H, Kang H S, Younghwa B, et al, 2010. Effects of the Tibetan Plateau on the Asian summer monsoon:a numerical case study using a regional climate model[J]. International Journal of Climatology, 30 (5):743-759. DOI:10.1002/joc. 1906.
Sugimoto S, Ueno K, Sha W, 2008. Transportation of water vapor into the Tibetan Plateau in the case of a passing synoptic-scale trough[J]. Journal of Meteorological Japan, 86 (6):935-949. DOI:10.2151/jmsj. 86.935.
Wang J, Yang Y, Xu X, et al, 2003. A monitoring study of the 1998 rainstorm along the Yangtze River of China by using TIPEX data[J]. Advances in Atmospheric Sciences, 20 (3):425-436. DOI:10.1007/BF02690800.
Wang W, Cui W, Wang X, et al, 2016. Evaluation of GLDAS-1 and GLDAS-2 forcing data and Noah model simulations over China at monthly scale[J]. Journal of Hydrometeorology, 17(11).
Xie H, Zhu X, 2013. Reference evapotranspiration trends and their sensitivity to climatic change on the Tibetan Plateau(1970-2009)[J]. Journal of Hydrology, 27 (25):3685-3693. DOI:10.1002/hyp. 9487.
You Q, Jiang Z, Bao Y, et al, 2016. Trends in upper tropospheric water vapour over the Tibetan Plateau from remote sensing[J]. International Journal of Climatology, 36. DOI:10.1002/joc. 4674.
Zhao T, Wang J, Dai A, 2015. Evaluation of atmospheric precipitable water from reanalysis products using homogenized radiosonde observations over China[J]. Journal of Geophysical Research Atmospheres, 120(20):10703-10727. DOI:10.1002/2015JD023906.
Zhao T, Dai A, Wang J, 2012. Trends in tropospheric humidity from 1970 to 2008 over China from a homogenized radiosonde dataset[J]. Journal of Climate, 25(13):4549-4567. DOI:10.1175/JCLI-D-11-00557.1.
曹丽青, 余锦华, 葛朝霞, 2005. 华北地区大气水汽含量特征及其变化趋势[J]. 水科学进展, 16 (3):439-443. DOI:10.3321/j. issn:1001-6791.2005.03.022.
杜军, 2001. 西藏高原近40年的气温变化[J]. 地理学报, 56(6):682-690. DOI:10.3321/j. issn:0375-5444.2001.06.007.
丁一汇, 孙颖, 刘芸芸, 等, 2013. 亚洲夏季风的年际和年代际变化及其未来预测[J]. 大气科学, DOI:37(2):253-280.10.3878/j. issn. 1006-9895.2012.12302.
解承莹, 李敏姣, 张雪芹, 2014. 近30a青藏高原夏季空中水资源时空变化特征及其成因[J], 自然资源学报, 29 (6):979-989. DOI:10.11849/zrzyxb. 2014.06.007.
解承莹, 李敏姣, 张雪芹, 等, 2015. 青藏高原南缘关键区夏季水汽输送特征及其与高原降水的关系[J]. 高原气象, 34 (2):327-337. DOI:10.7522/j. issn. 1000-0534.2014.00034.
敬文琪, 崔园园, 刘瑞霞, 等, 2017. 影响长江中下游夏季降水的青藏高原水汽抽吸作用和水汽路径的定量化研究[J]. 高原气象, 36(4):900-911. DOI:10.7522/j. issn. 1000-0534.2016.00084.
林厚博, 游庆龙, 焦洋, 等, 2016. 青藏高原及附近水汽输送对其夏季降水影响的分析[J]. 高原气象, 35 (2):309-317. DOI:10.7522/j. issn. 1000-0534.2014.00146.
陆渝蓉, 高国栋, 1984. 我国大气中平均水汽含量与水分平衡的特征[J]. 气象学报, 42 (3):45-54. DOI:10.11676/qxxb1984.035.
史玉光, 2014. 新疆降水与水汽的时空分布及变化研究[M]. 北京:气象出版社, 118-119.
王光谦, 李铁键, 李家叶, 等, 2016. 黄河流域源区与上中游空中水资源特征分析[J]. 人民黄河, 38 (10):79-82. DOI:10.3969/j. issn. 1000-1379.2016.10.016.
王可丽, 江灏, 赵红岩, 2006. 西风带与季风对中国西北地区的水汽输送. 水科学进展, 16(3):432-438. DOI:10.3321/j. issn:1001-6791.2005.03.021.
王霄, 巩远发, 岑思弦, 2009. 夏半年青藏高原"湿池"的水汽分布及水汽输送特征[J]. 地理学报, 64(5):601-608. DOI:10.3321/j. issn:0375-5444.2009.05.009.
谢启玉, 巩远发, 杨蓉, 等, 2015. 基于ERA-Interim资料分析青藏高原"湿池"变化特征[J]. 自然资源学报, 30(7):1163-1171.
谢欣汝, 保云涛, 孟宪红, 2018. 基于多源数据的青藏高原夏季降水与水汽输送的联系[J]. 高原气象, 37(1):78-92. DOI:10.7522/j. issn. 1000-0534.2017.00030.
荀学义, 胡泽勇, 孙俊, 等, 2011. 高原地区ERA40与NCEPI再分析资料对比分析[J]. 气象科技, 39(4):392-400. DOI:10.3969/j. issn. 1671-6345.2011.04.002.
张强, 张杰, 孙国武, 等, 2007. 祁连山山区空中水汽分布特征研究[J]. 气象学报, 65 (4):633-643. DOI:10.3321/j. issn:0577-6619.2007.04.015.
赵洪宇, 张雪芹, 解承莹, 2017. 多源水汽再分析资料在青藏高原的适用性评估[J]. 干旱区研究, 34(2):300-308. DOI:10.13866/j. azr. 2017.02.08.
周顺武, 吴萍, 王传辉, 等, 2011. 青藏高原夏季上空水汽含量演变特征及其与降水的关系[J]. 地理学报, 66 (11):1466-1478. DOI:10.11821/xb201111003.
周长艳, 邓梦雨, 齐冬梅, 2017. 青藏高原湿池的气候特征及其变化[J]. 高原气象, 36(2):294-306. DOI:10.7522/j. issn. 1000-0534.2016.00042.
[1] 刘菊菊, 游庆龙, 王楠. 青藏高原夏季云水含量及其水汽输送年际异常分析[J]. 高原气象, 2019, 38(3): 449-459.
[2] 陈月, 李跃清, 范广洲, 陈宇航. 青藏高原大气蕴含潜热时空分布特征研究[J]. 高原气象, 2019, 38(3): 460-473.
[3] 王奕丹, 胡泽勇, 孙根厚, 谢志鹏, 严晓强, 郑汇璇, 付春伟. 高原季风特征及其与东亚夏季风关系的研究[J]. 高原气象, 2019, 38(3): 518-527.
[4] 郑汇璇, 胡泽勇, 孙根厚, 谢志鹏, 严晓强, 王奕丹, 付春伟. 那曲高寒草地总体输送系数及地面热源特征[J]. 高原气象, 2019, 38(3): 497-506.
[5] 明绍慧, 秦正坤, 黄瑜. 卫星资料揭示的青藏高原对流层上层温度气候演变趋势特征[J]. 高原气象, 2019, 38(2): 264-277.
[6] 杜牧云, 王斌, 肖艳姣, 付志康, 周伶俐. X波段双线偏振雷达青藏高原观测资料质量分析[J]. 高原气象, 2019, 38(2): 278-287.
[7] 于涵, 张杰, 刘诗梦. 青藏高原地表非绝热加热模态及其与中国北方环流异常的联系[J]. 高原气象, 2019, 38(2): 237-252.
[8] 严晓强, 胡泽勇, 孙根厚, 谢志鹏, 王奕丹, 郑汇璇. 那曲高寒草地长时间地面热源特征及其气候影响因子分析[J]. 高原气象, 2019, 38(2): 253-263.
[9] 余小嘉, 杨胜朋, 蒋熹. COSMIC掩星资料在青藏高原地区的偏差特征[J]. 高原气象, 2019, 38(2): 288-298.
[10] 朱平, 俞小鼎. 青藏高原东北部一次罕见强对流天气的中小尺度系统特征分析[J]. 高原气象, 2019, 38(1): 1-13.
[11] 屠妮妮, 郁淑华, 高文良. 风场对高原涡在河套地区打转影响的初步分析[J]. 高原气象, 2019, 38(1): 66-77.
[12] 胡梦玲, 游庆龙. 青藏高原南侧经圈环流变化特征及其对降水影响分析[J]. 高原气象, 2019, 38(1): 14-28.
[13] 王玉琦, 鲍艳, 南素兰. 青藏高原未来气候变化的热动力成因分析[J]. 高原气象, 2019, 38(1): 29-41.
[14] 刘田, 阳坤, 秦军, 田富强. 青藏高原中、东部气象站降水资料时间序列的构建与应用[J]. 高原气象, 2018, 37(6): 1449-1457.
[15] 吕艺影, 银燕, 陈景华, 况祥, 郝囝, 张昕. 雨季青藏高原东部MCC移动特征及其热动力原因分析[J]. 高原气象, 2018, 37(6): 1511-1527.
img

QQ群聊

img

官方微信