Please wait a minute...
高级检索
高原气象  2018, Vol. 37 Issue (6): 1628-1642    DOI: 10.7522/j.issn.1000-0534.2018.00093
论文     
一次冷性停滞型西南低涡结构的演变特征
陈贵川1, 谌芸2, 王晓芳3, 朱岩4, 李强4, 张勇4
1. 重庆市气象科学研究所, 重庆 401147;
2. 国家气象中心, 北京 100081;
3. 中国气象局武汉暴雨研究所, 湖北 武汉 430074;
4. 重庆市气象台, 重庆 401147
The Developmental Characteristics of the Structure of a Stationery Cold Southwest Vortex
CHEN Guichuan1, SHEN Yun2, WANG Xiaofang3, ZHU Yan4, LI Qiang4, ZHANG Yong4
1. ChongqingInstitute of Meteorological Sciences, Chongqing 401147, China;
2. National Meteorological Centre, Beijing 100081, China;
3. Institute of Heavy Rain, China Meteorological Administration. Wuhan, Wuhan 430074, Hubei, China;
4. Chongqing Meteorological Bureau, Chongqing 401147, China
 全文: PDF(52857 KB)   HTML ( 0)
摘要: 利用常规气象观测资料、NCEP(National Centers for Environmental Prediction,美国国家环境预报中心)再分析资料、雷达资料、卫星以及区域站资料等对2015年8月16日08:00(北京时,下同)至18日20:00四川盆地持续性大暴雨过程作了系统分析。结果表明:在西太平洋副热带高压(下称西太副高)阻塞形势下,高原涡东侧和西太副高西北侧的正涡度平流共同为西南低涡提供动力条件,前侧温度槽叠加在中低层暖性浅薄天气系统上加强了对流不稳定,冷空气缓慢侵入造成冷性停滞型西南低涡持续发展;西南低涡中的降水通过凝结潜热释放作用与西南低涡相伴增强;西南低涡成熟阶段,高低层正涡度柱几乎垂直耦合,水平流场形态上表现为近圆形,700 hPa温度、水汽及能量场均表现为"S"形非对称形态,有利于中低层维持向东北部的暖湿输送机制,这是纬向降水强于经向的重要因素;盆地地形条件下,纬向降水主要是中心中尺度对流系统MCSs(Mesoscale Convective Systems)两次稳定发展的结果,降水集中在西南低涡暖切变线南侧,地面静止锋附近,而经向降水主要是两次冷锋MCSs降水,位于西南低涡低槽前部;西南低涡中MCSs活动分为八个阶段,在动力机制维持情况下,西南低涡南侧MCSs通过影响水汽输送对中心MCSs发展形成制约机制,西南低涡东北部和东南部降水呈现此消彼长的"跷跷板"发展特征。
关键词: 西南低涡高原涡大暴雨中尺度对流系统演变特征    
Abstract: By using data from conventional soundings and surface observation, NCEP reanalysis, radar, satellite and regional automatic stations, an incessant heavy rainstorm from 16 to 18 August 2015 in Sichuan Basin was systematically analyzed. The results showed that being blocked by the West Pacific Subtropical High (WPSH), the positive vorticity advection to the eastern side of the plateau vortex and the northwestern side of the WPSH provide the dynamic conditions for the Southwest Vortex(SV), the front temperature trough superimposed on the middle and low warm shallow synoptic systems strengthens the convective instability, the cold air invading slowly results in the stationery cold SV sustainable development. The precipitation in SV is enhanced by condensation latent heat release. In the maturation stage of SV, the vertical positive vorticity column at all levels is almost vertically coupled. The horizontal flow pattern approximately forms as a circle, while the temperature, moisture and energy fields at 700 hPa asymmetrically shape as "S". It is beneficial to maintain the heat and moisture transport mechanism to the northeast region of Chongqing at lower level, which is a crucial factor explaining why horizontal precipitation is stronger than that of meridian. Located in the basin area, the precipitation results from the stable development of central MCSs twice, clustering to the southern side of the warm shear of the SV, near the stationery front on the surface. In contrast, meridian precipitation is the outcome of MCSs triggered by cold front twice, located ahead of the trough of SV. The life history of MCSs could be divided into eight stages. With the maintenance of dynamic pump, the MCSs to the southern side of SV inhibits the evolution of central MCSs by influencing vapor transfer, resulting in the "see-saw" feature of the development of precipitation to the northeast and southeast of SV.
Key words: Southwest Vortex (SV)    plateau vortex    heavy rainstorm    mesoscale convective systems (MCSs)    developmental characteristics
收稿日期: 2018-05-22 出版日期: 2018-12-24
:  P458.1+21.1  
基金资助: 国家重点研发计划项目(2018YFC1507200);国家自然科学基金项目(91637211);中国气象局气象关键技术集成与应用(面上)项目(CMAGJ2015M49)
作者简介: 陈贵川(1973-),男,重庆万州人,正高级工程师,主要从事天气预报及数值模拟研究.E-mail:cgccq@163.com
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈贵川
谌芸
王晓芳
朱岩
李强
张勇

引用本文:

陈贵川, 谌芸, 王晓芳, 朱岩, 李强, 张勇. 一次冷性停滞型西南低涡结构的演变特征[J]. 高原气象, 2018, 37(6): 1628-1642.

CHEN Guichuan, SHEN Yun, WANG Xiaofang, ZHU Yan, LI Qiang, ZHANG Yong. The Developmental Characteristics of the Structure of a Stationery Cold Southwest Vortex. Plateau Meteorology, 2018, 37(6): 1628-1642.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2018.00093        http://www.gyqx.ac.cn/CN/Y2018/V37/I6/1628

Chen S J, Lorenzo D, 1984. Numerical prediction of the heavy rainfall vortex over eastern Asia monsoon region[J]. J Met Soc Japan, 62(5):730-747.
Kuo H L, 1974. Further studies of the parameterization of the influence of cumulus convection on large-scale flow[J]. J Atmos Sci, 31(5):1232-1240.
Kuo Y H, Cheng L S, Anthes R A, 1986. Mesoscale analyses of the Sichuan flood catastrophe, 11-15 July 1981[J]. Mon Wea Rev, 114(11):1984-2003.
Kuo Y H, Cheng L S, Bao J W, 1988. Numerical simulation of the 1981 Sichuan flood. PartI:Evolution of a mesoscale southwest vortex[J]. Mon Wea Rev, 116(12):2481-2504.
Wang W, Kuo Y H, Thomas T W, 1993. A diabatically driven mesoscale vortex in the lee of the Tibetan Plateau[J]. Mon Wea Rev, 121(9):2542-2561.
陈贵川, 谌芸, 张勇, 等, 2013. "12·7·21"西南涡极端强降雨的成因分析[J]. 气象, 39(12):1529-1541. Chen G C, Chen Y, Zhang Y, et al, 2013. Causes analysis of the southwest vortex extremely heavy rainfall on 21 july 2012[J]. Meteor Mon, 39(12):1529-1541.
陈永仁, 李跃清, 2013. "12·7·22"四川暴雨的MCS特征及对短时强降雨的影响[J]. 气象, 39(7):848-860. Chen Y R, Li Y Q, 2013. Characteristics of mesoscale convective system and its effects on short-time severe rainfall in sichuan basin during 21-22 july 2012[J]. Meteor Mon, 39(7):848-860.
陈忠明, 1989. 环境场作用与西南低涡移动的初步分析[J]. 高原气象, 8(4):301-312. Chen Z M, 1989. The preliminary study of effect of environment flow fields on movement of southwest vortex[J]. Plateau Meteor, 8(4):301-312.
陈忠明, 廖强, 闵文彬, 1998. 一次强烈发展西南低涡的中尺度结构分析[J]. 应用气象学报, 9(3):273-282. Chen Z M, Miao Q, Min W B, 1998. A case analysis on mesoscale structure of severe southwest vortex[J]. Quart J Appl Meteor, 9(3):273-282.
陈忠明, 闵文彬, 缪强, 等, 2004. 高原涡与西南低涡相互耦合作用的个例诊断[J]. 高原气象, 23(1):75-80. Chen Z M, Min W B, Miao Q, et al, 2004. A case study on coupling interaction between plateau and southwest vortexes[J]. Plateau Meteor, 23(1):75-80.
段海霞, 陆维松, 毕宝贵, 2008. 凝结潜热与地表热通量对一次西南低涡暴雨影响分析[J]. 高原气象, 27(6):1315-1321. Duan H X, Lu W S, Bi B G, 2008. Impact of the condensation heating and surface heat flux on a rainstorm event of southwest vortex[J]. Plateau Meteor, 27(6):1315-1321.
顾清源, 周春花, 青泉, 等, 2008. 一次西南低涡特大暴雨过程的中尺度特征分析[J]. 气象, 34(4):39-47. Gu Q Y, Zhou C H, Qing Q, et al, 2008. Mesoscale characteristics analysis of severe torrential rain caused by a southwestern low vortex process[J]. Meteor Mon, 34(4):39-47.
郝丽萍, 周瑾, 康岚, 2016. 西南涡暴雨天气过程分析和数值模拟试验[J]. 高原气象, 35(5):1182-1190. Hao L P, Zhou J, Kang Lan, 2016. Weather analyses and numerical study of Southwest China vortex and its induced heavy rainfall[J]. Plateau Meteor, 35(5):1182-1190. DOI:10.7522/j. issn. 1000-0534.2015.00046.
何光碧, 2012. 西南低涡研究综述[J]. 气象, 38(2):155-163. He G B, 2012. Review of the southwest vortex research[J]. Meteor Mon, 38(2):155-163.
黄福均, 1986. 西南低涡的合成分析[J]. 大气科学, 10(4):402-408. Huang F J, 1986. A composite analysis of the southwest vortex[J]. Scientia Atmospherica Sinica, 10(4):402-408.
李超, 李跃清, 蒋兴文, 2017. 夏季长生命史盆地涡活动对川渝季节降水的影响[J]. 高原气象, 36(3):685-696. Li C, Li Y Q, Jiang X W, 2017. Mechanism of long lifespan Sichuan Basin vortex's activity influence the precipitation in Sichuan-Chongqing region on summer[J]. Plateau Meteor, 36(3):685-696. DOI:10.7522/j. issn. 1000-0534.2016.00064.
李国平, 万军, 卢敬华, 1991. 暖性西南低涡形成的一种可能机制[J]. 应用气象学报, 2(1):91-99. Li G P, Wan J, Lu J H, 1991. A potential mechanism of the warm vortex genesis in southwest china[J]. Quart J Appl Meteor, 2(1):91-99.
李国庆, 陈瑞荣, 杨广基, 等, 1976. 青藏高原东南部低涡的初步模拟试验[J]. 中国科学 (3):286-294. Li G Q, Chen R R, Yang G J, et al, 1976. A preliminary simulative experiment of the vortex to the southeast of Tibetan Plateau[J]. China Science (3):286-294.
李黎, 刘海文, 吕世华, 2017. 春季西南低涡年际和年代际变化特征分析[J]. 高原气象, 36(6):1512-1520. Li L, Liu H W, Lu S H, 2017. Interannual and interdecadal variations analysis of the spring Southwest Vortex[J]. Plateau Meteor, 36(6):1512-1520. DOI:10.7522/j. issn. 1000-0534.2017.00016.
罗四维, 1977. 青藏高原东侧动力性低涡形成机理的分析[J]. 气象科技 (增刊):54-65. Luo S W, 1977. An analysis of formation of the dynamic vortex to the east side of Tibetan Plateau[J]. Meteor Sci Technol (suppl):54-65.
罗四维, 1992. 青藏高原及其邻近地区几类天气系统的研究[M]. 北京:气象出版社, 56-96. Luo S W, 1992. A study of several synoptic systems on Tibetan Plateau and adjacent areas[M]. Beijing:China Meteorological Press, 56-96.
卢敬华, 1986. 西南低涡概论[M]. 北京:气象出版社, 58, 129-146. Lu J H, 1988. Introduction to the southwest vortex[M]. BeiJing:China Meteotological Press, 58, 129-146.
卢萍, 李跃清, 郑伟鹏, 等, 2014. 影响华南持续性强降水的西南涡分析和数值模拟[J]. 高原气象, 33(6):1457-1467. Lu P, Li Y Q, Zheng W P, et al, 2014. Analysis and numerical simulation of southwest vortex on continuous heavy rain processes in south china[J]. Plateau Meteor, 33(6):1457-1467. DOI:10.7522/j. issn. 1000-0534.2013.00137.
彭新东, 程麟生, 1994. 高原东侧低涡切变线发展的个例数值研究:Ⅱ中尺度数值模拟[J]. 兰州大学学报(自然科学), 30(1):124-131. Peng X D, Cheng L S, 1994. A case numerical study on the evolution of the low vortex and shear-1ine on the east side of the plateau:Ⅱ mesoscale numerical simulation[J]. Journal of Lanzhou University (Natural Sciences), 30(1):124-131.
陶诗言, 1980. 中国之暴雨[M]. 北京:科学出版社, 1-7. Tao S Y, 1980. China Storms[M]. BeiJing:China Science Press, 1-7.
许威杰, 张耀存, 2017. 凝结潜热加热与对流反馈对一次高原低涡过程影响的数值模拟[J]. 高原气象, 36(3):763-775. Xu W J, Zhang Y C, 2017. Numerical study on the feedback between latent heating and convection in a Qinghai-Tibetan plateau vortex[J]. Plateau Meteor, 36(3):763-775. DOI:10.7522/j. issn. 1000-0534.2016.00061.
赵平, 孙淑清, 1991. 一次西南低涡形成过程的数值试验和诊断(一):地形动力作用和潜热释放作用对西南低涡影响的数值试验对比分析[J], 大气科学, 15(6):46-52. Zhao P, Sun S Q, 1991. Numerical simulation and diagnosis of the formation of SW Vortex Ⅰ:an analysis of numerical simulation of the effects of topography and latent heat on SW Vortex[J]. Scientia Atmospherica Sinica, 15(6):46-52.
赵平, 胡昌琼, 孙淑清, 1992. 一次西南低涡形成过程的数值试验和诊断Ⅱ:涡度方程和能量转换函数的诊断分析[J]. 大气科学, 16(2):177-184. Zhao P, Hu C Q, Sun S Q, 1992. Numerieal simulation and diagnosis of the formation process of SW vortex Ⅱ:The diagnosis of vorticity equation and energy conversion function[J]. Scientia Atmospherica Sinica, 16(2):177-184.
赵思雄, 傅慎明, 2007.2004年9月川渝大暴雨期间西南低涡结构及其环境场分析[J]. 大气科学, 31(6):1059-1075. Zhao S X, Fu SM, 2007. An anaiysis on the southwest vortex and its environment fields during heavy rainfali in eastem sichuan province and chongqing in september 2004[J]. Chinese J Atmos Sci, 31(6):1059-1075.
赵玉春, 王叶红, 2010. 高原涡诱生西南涡特大暴雨成因的个例研究[J]. 高原气象, 29(4):819-831. Zhao Y C, Wang Y H, 2010. A case study on plateau vortex inducing southwest vortex and producing extremely heavy rain[J]. Plateau Meteor, 29(4):819-831.
杨舒楠, 张芳华, 徐珺, 等, 2016. 四川盆地一次暴雨过程的中尺度对流及其环境场特征[J]. 高原气象, 35(6):1476-1486. Yang S N, Zhang F H, Xu J, et al, 2016. Mesoscale convective systems and characteristics of environment field of a heavy rainfall process occurred in Sichuan Basin[J]. Plateau Meteor, 35(6):1476-1486. DOI:10.7522/j. issn. 1000-0534.2015.00105.
王晓芳, 崔春光, 2011. 中尺度对流系统研究的若干进展[J]. 暴雨灾害, 30(2):97-106. Wang X F, Cui C G, 2011. A number of advances of the research on heavy rain mesoscale convective systems[J]. Torrential Rain Disaster, 30(2):97-106.
韦统键, 薛建军, 1996. 影响江淮地区的西南涡中尺度结构特征[J]. 高原气象, 15(4):456-463. Wei T J, Xue J J, 1996. The meesoscale structure characteristics of southwest vortex over Jiang-Huai River areas[J]. Plateau Meteor, 15(4):456-463.
[1] 王研峰, 黄武斌, 王聚杰, 黄玉霞, 段伯隆, 杨勇. 一次甘肃天水强冰雹的雷达回波特征及成因分析[J]. 高原气象, 2019, 38(2): 368-376.
[2] 肖玉华, 郁淑华, 高文良, 肖递祥, 肖红茹, 师锐. 一例伴随西南涡的入海高原涡持续活动成因分析[J]. 高原气象, 2018, 37(6): 1616-1627.
[3] 任丽, 赵玲, 马国忠, 林嘉楠. 台风残涡北上引发东北地区北部大暴雨的中尺度特征分析[J]. 高原气象, 2018, 37(6): 1671-1683.
[4] 刘自牧, 李国平, 张博. 高原涡与高原切变线伴随出现的统计特征[J]. 高原气象, 2018, 37(5): 1233-1240.
[5] 曾勇, 杨莲梅. 新疆西部一次极端暴雨事件的成因分析[J]. 高原气象, 2018, 37(5): 1220-1232.
[6] 章焕, 范广洲, 张永莉, 赖欣. 青藏高原土壤湿度对一例高原涡影响的数值模拟[J]. 高原气象, 2018, 37(4): 886-898.
[7] 杨颖璨, 李跃清, 陈永仁. 高原低涡东移加深过程的结构分析[J]. 高原气象, 2018, 37(3): 702-720.
[8] 赵庆云, 张武, 陈晓燕, 苟尚. 一次六盘山两侧强对流暴雨中尺度对流系统的传播特征[J]. 高原气象, 2018, 37(3): 767-776.
[9] 康延臻, 靳双龙, 彭新东, 杨旭, 尚可政, 王式功. 单双参云微物理方案对华北“7·20”特大暴雨数值模拟对比分析[J]. 高原气象, 2018, 37(2): 481-494.
[10] 高文良, 郁淑华. 高原涡诱发西南涡伴行个例的环境场与成因分析[J]. 高原气象, 2018, 37(1): 54-67.
[11] 李黎, 刘海文, 吕世华. 春季西南低涡年际和年代际变化特征分析[J]. 高原气象, 2017, 36(6): 1512-1520.
[12] 王毅, 何立富, 代刊, 郭云谦. 集合敏感性方法在高原涡和西南涡引发暴雨过程中的应用[J]. 高原气象, 2017, 36(5): 1245-1256.
[13] 王毅, 何立富, 代刊, 郭云谦. 集合敏感性方法在高原涡和西南涡引发暴雨过程中的应用[J]. 高原气象, 2017, 36(5): 1245-1256.
[14] 李哲, 李国翠, 刘黎平, 杨吉. 飑线优化识别及雷暴大风分析[J]. 高原气象, 2017, 36(3): 801-810.
[15] 赵庆云, 傅朝, 刘新伟, 陈晓燕, 周晓军. 西北东部暖区大暴雨中尺度系统演变特征[J]. 高原气象, 2017, 36(3): 697-704.
img

QQ群聊

img

官方微信