Please wait a minute...
高级检索
高原气象  2019, Vol. 38 Issue (3): 507-517    DOI: 10.7522/j.issn.1000-0534.2018.00158
论文     
黄土高原典型塬区土壤热性质变化特征研究
马欣1,2, 张堂堂1,3, 陈金雷1,4
1. 中国科学院西北生态环境资源研究院/寒旱区陆面过程与气候变化重点实验室, 甘肃 兰州 730000;
2. 中国科学院大学, 北京 100049;
3. 中国科学院 平凉陆面过程与灾害天气观测研究站, 甘肃 平凉 744015;
4. 中国科学院西北生态环境资源研究院/冰冻圈科学国家重点实验室, 甘肃 兰州 730000
Observations of Soil Thermal Properties in a Typical Mesa over Chinese Loess Plateau
MA Xin1,2, ZHANG Tangtang1,3, CHEN Jinlei1,4
1. Key Laboratory of Land Surface Processes and Climate Change, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. Pingliang Land Surface Process & Severe Weather Research Station, Chinese Academy of Sciences, Pingliang 744015, Gansu, China;
4. State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China
 全文: PDF(2190 KB)   HTML ( 3)
摘要: 利用2014年7月至2015年1月黄土高原地区土壤含水量和土壤热性质观测资料,分析了该区域土壤热性质及其变化特征,并讨论了降水对土壤热性质的影响,结果显示:(1)除10 cm外,各层土壤热扩散率整体上呈现夏季下降,秋季平稳,冬季上升三个阶段,土壤体积比热容和土壤导热率表现为夏季上升,秋季平稳,冬季下降的趋势;100 cm处的土壤热扩散率始终高于40 cm,土壤热扩散率不随土壤深度增加而线性增加。(2)5 cm与10 cm层的土壤热性质均有明显日变化特征,且振幅较大,40 cm与100 cm处的日变化振幅逐渐变小。由于10 cm层土壤含水量的波动最大,该层的土壤热性质变化波动也最大。(3)土壤温度与土壤热扩散率随降水增加而下降,土壤热扩散率下降主要是土壤含水量较高时,土壤导热率与土壤体积比热容变化的幅度不一致所致;土壤体积比热容与土壤导热率随降水量增加而上升,降水主要通过土壤含水量的变化影响土壤热性质。
关键词: 黄土高原土壤热扩散率土壤导热率土壤体积比热容    
Abstract: The temporal variation of soil thermal properties and the response to precipitation in a typical cropland are analyzed during a period from July 2014 to January 2015 over Loess Plateau. The flat and relatively wide loess area is the simplest underlying surface of the Loess Plateau. It is important to understand the land-atmosphere interactions over the loess area and then further promote the study to other underlying surfaces over the Loess Plateau. The underlying surface of the Pingliang Land Surface Process and Severe Weather Research Station, Chinese Academy of Sciences is typical loess area which offered meteorological and land surface observation data to many researches. This study cannot represent the whole loess plateau but can provide reference to understand the water and heat exchange process on land surface. The results are as follows:(1) In addition to 10 cm, the soil thermal diffusivity decreasing in summer, almost keeping stabilization in autumn and increasing in winter, while soil temperature shows a downward trend in this duration. Linear growth is not found between the soil thermal diffusivity and soil depth, although the soil thermal diffusivity at 100 cm depth is always higher than that one at 40 cm depth in the total study period. (2) The soil thermal properties at 5 cm and 10 cm layers are varied significantly and the daily variation amplitude of soil thermal properties at 40 cm and 100 cm gradually decrease. Influenced by the fluctuation of soil water content, soil thermal properties at 10 cm fluctuated the most among four layers. (3) The soil thermal properties at 5 cm change significantly with precipitation. The soil volumetric heat capacity and thermal conductivity change inconsistently when soil water content is high will lead to a decrease of soil thermal diffusivity, and the soil volumetric heat capacity and thermal conductivity increase with the increase of soil water content. There is a positive relationship between the soil volumetric heat capacity and thermal conductivity. Precipitation mainly affects the soil thermal properties through changes in soil water content.
Key words: Loess Plateau    soil thermal diffusivity    soil volumetric heat capacity    soil thermal conductivity
收稿日期: 2018-10-10 出版日期: 2019-06-11
:  P41  
基金资助: 国家自然科学基金项目(41675157);中国科学院寒区旱区环境与工程研究所青年STS项目(Y651671001)
通讯作者: 张堂堂(1977-),男,山西兴县人,副研究员,主要从事寒旱区陆面过程与卫星遥感应用研究.E-mail:ttzhang@lzb.ac.cn     E-mail: ttzhang@lzb.ac.cn
作者简介: 马欣(1995-),女,甘肃会宁人,硕士研究生,主要从事寒旱区陆面过程数值模拟与卫星遥感研究.E-mail:maxin@lzb.ac.cn
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
马欣
张堂堂
陈金雷

引用本文:

马欣, 张堂堂, 陈金雷. 黄土高原典型塬区土壤热性质变化特征研究[J]. 高原气象, 2019, 38(3): 507-517.

MA Xin, ZHANG Tangtang, CHEN Jinlei. Observations of Soil Thermal Properties in a Typical Mesa over Chinese Loess Plateau. Plateau Meteorology, 2019, 38(3): 507-517.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2018.00158        http://www.gyqx.ac.cn/CN/Y2019/V38/I3/507

Chen J, Wen J, Tian H, et al, 2018.A study of soil thermal and hydraulic properties and parameterizations for CLM in theSRYR[J].Journal of Geophysical Research:Atmospheres, 123(16):8487-8499.DOI:10.1029/2017jd028034.
Chen X, Yu Y, Chen J B, et al, 2016.Seasonal and interannual variation of radiation and energy fluxes over a rain-fed cropland in the semi-arid area of Loess Plateau, northwestern China[J].Atmospheric Research, 176:240-253.DOI:10.1016/j.atmosres.2016.03.003.
Farouki O T, 1981.Thermal properties of soils[M].Hanover, NH:U.S.Army Cold Regions Research and Engineering Laboratory.
Forbes J D, 1846.XVⅢ.-Account of some Experiments on the Temperature of the Earth at different Depths, and in different Soils, near Edinburgh[J].Earth and Environmental Science Transactions of The Royal Society of Edinburgh, 1846, 16(2):189-236.DOI:10.1017/S0080456800025023.
Hillel D, 2004.Introduction to environmental soil physics[M].San Diego:Elsevier Accademic Press.
Huang J, Zhang W, Zuo J, et al, An overview of the semi-arid climate and environment research observatory over the Loess Plateau[J].Advances in Atmospheric sciences, 25(6):906-921.DOI:10.1007/s00376-008-0906-7.
Jin Z, Wei L, Zhang W, et al, 2017.Separating vegetation greening and climate change controls on evapotranspiration trend over the Loess Plateau[J].Scientific Reports, 7(1):8191.DOI:10.1038/s41598-017-08477-x.
Mengistu A G, van Rensburg L D, Mavimbela S S, 2017.The effect of soil water and temperature on thermal properties of two soils developed from aeolian sands in South Africa[J].Catena, 158:184-193.DOI:10.1016/j.catena.2017.07.001.
Ochsner T E, Horton R, Ren T, 2001.A new perspective on soil thermal properties[J].Soil science society of America Journal, 65:1641-1647.DOI:10.2136/sssaj2001.1641.
Usowicz B, Kossowski J, Baranowski P, 1996.Spatial variability of soil thermal properties in cultivated fields[J].Soil Tillage Res, 39:85-100.DOI:10.1016/S0167-1987(96)01038-0.
Wang G, Huang J, Guo W, et al, 2010.Observation analysis of land-atmosphere interactions over the Loess Plateau of northwest China[J].Journal of Geophysical Research Atmospheres, 115(D7):D00K17.DOI:10.1029/2009JD013372.
Wang C, Yang K, 2018.A new scheme for considering soil water-heat transport coupling based on Community Land Model:Model description and preliminary validation[J].Journal of Advances in Modeling Earth Systems, 10(4):927-950.DOI:10.1002/2017MS001148.
Yue P, Zhang Q, Zhao W, et al, 2015.Influence of environmental factors on land-surface water and heat exchange during dry and wet periods in the growing season of semiarid grassland on the Loess Plateau[J].Science China Earth Sciences, 58(11):2002-2014.DOI:10.1007/s11430-015-5133-3.
Zhang T, Wen J, Su Z, et al, 2009.Soil moisture mapping over the Chinese Loess Plateau using ENVISAT/ASARdata[J].Advances in Space Research, 43(7):1111-1117.DOI:10.1016/j.asr.2008.10.030.
付强, 颜培儒, 李天霄, 等, 2017.冻融期不同覆盖和气象因子对土壤导热率和热通量的影响[J].农业工程学报, 33(20):98-105.
高志球, 卞林根, 张雅斌, 等, 2002.土壤热传导方程解析解和那曲地区土壤热扩散率研究[J].气象学报, 60(3):352-360.DOI:10.11676/qxxb2002.042.
黄荣辉, 2011.中国西北干旱区陆-气相互作用及其对东亚气候变化的影响[M].北京:气象出版社.
贾东于, 文军, 张堂堂, 等, 2014.黄土高原降水对土壤含水量和导热率的影响[J].高原气象, 33(3):712-720.DOI:10.7522/j.issn.1000-0534.2014.00049.
李斌, 张金屯, 2003.黄土高原地区植被与气候的关系[J].生态学报, 23(1):82-89.DOI:10.3321/j.issn:1000-0933.2003.01.011.
李毅, 邵明安, 王文焰, 等, 2003.质地对土壤热性质的影响研究[J].农业工程学报, 19(4):62-65.DOI:10.3321/j.issn:1002-6819.2003.04.014.
李振朝, 韦志刚, 刘蓉, 等, 2012.黄土高原典型塬区土壤热状况研究[J].干旱区地理, 35(5):778-786.DOI:10.13826/j.cnki.cn65-1103/x.2012.05.015.
刘东生, 安芷生, 袁宝印, 1985.中国的黄土与风尘堆积[J].第四纪研究, 6(1):113-125.
刘东生, 丁仲礼, 1990.中国黄土研究新进展(二)古气候与全球变化[J].第四纪研究, 10(1):1-9.
卢爱刚, 2009.半个世纪以来黄土高原降水的时空变化[J].生态环境学报, 18(3):957-959.DOI:10.3969/j.issn.1674-5906.2009.03.029.
缪育聪, 刘树华, 吕世华, 等, 2012.土壤热扩散率及其温度、热通量计算方法的比较研究[J].地球物理学报, 55(2):441-451.DOI:10.6038/j.issn.0001-5733.2012.02.008.
邵明安, 王全九, 黄明斌, 2006.土壤物理学[M].北京:高等教育出版社, 170-175.
孙秉强, 张强, 董安祥, 等, 2005.甘肃黄土高原土壤水分气候特征[J].地球科学进展, 20(9):1041-1046.DOI:10.3321/j.issn:1001-8166.2005.09.015.
孙菽芬, 2005.陆面过程的物理、生化机理和参数化模型[M].北京:气象出版社.
王丹云, 吕世华, 韩博, 等, 2018.黄土高原春季植被变化分布与变化特征及其对春旱的响应研究[J].高原气象, 37(5):1208-1219.DOI:10.7522/j.issn.1000-0534.2018.00033.
韦志刚, 文军, 吕世华, 等, 2005.黄土高原陆-气相互作用预试验及其晴天地表能量特征分析[J].高原气象, 24(4):545-555.
吴春东, 2016.冻融期不同秸秆覆盖厚度下土壤水热动态变化规律研究[D].哈尔滨:东北农业大学, 1-76.
解晋, 余晔, 刘川, 等, 2018.青藏高原地表感热通量变化特征及其对气候变化的响应[J].高原气象, 37(1):28-42.DOI:10.7522/j.issn.1000-0534.2017.00019.
谢琰, 文军, 刘蓉, 等, 2018.太阳辐射和水汽压差对黄河源区高寒湿地潜热通量的影响研究[J].高原气象, 37(3):614-625.DOI:10.7522/j.issn.1000-0534.2017.00063.
岳平, 张强, 王胜, 等, 2013.黄土高原半干旱草地降水前后土壤的温、湿度及热力特征[J].中国沙漠, 33(6):1766-1774.
张强, 王胜, 张杰, 等, 2009.干旱区陆面过程和大气边界层研究进展[J].地球科学进展, 24(11):1185-1194.DOI:10.3321/j.issn:1001-8166.2009.11.002.
张强, 王胜, 2007.干旱荒漠区土壤水热特征和地表辐射平衡年变化规律研究[J].自然科学进展, 17(2):211-216.DOI:10.3321/j.issn:1002-008X.2007.02.009.
周亚, 高晓清, 李振朝, 等, 2017.青藏高原深层土壤热通量的变化特征分析[J].高原气象, 36(2):307-316.DOI:10.7522/j.issn.1000-0534.2016.00120.
[1] 程海艳, 余晔, 陈晋北, 姚惇, 解晋, 李江林. 大气红外探测器(AIRS)温、湿廓线反演产品及边界层高度在黄土高原的验证[J]. 高原气象, 2018, 37(2): 432-442.
[2] 周亚, 高晓清, 李振朝, 惠小英, 杨丽薇. 青藏高原深层土壤热通量的变化特征分析[J]. 高原气象, 2017, 36(2): 307-316.
[3] 陈星, 余晔, 陈晋北, 李振朝, 马晨晨, 解晋. 黄土高原半干旱区雨养农田地表辐射和能量通量的季节变化[J]. 高原气象, 2016, 35(2): 351-362.
[4] 李江林, 余晔, 刘川. 青藏高原与黄土高原过渡区雷暴活动特征及东亚夏季风的影响[J]. 高原气象, 2015, 34(6): 1575-1583.
[5] 潘留杰, 张宏芳, 侯建忠, 袁小林. 弱天气系统强迫下黄土高原强对流云的初生及演变[J]. 高原气象, 2015, 34(4): 982-990.
[6] 姚玉璧, 王劲松, 王莺, 杨金虎, 李俭峰, 雷俊. 黄土高原春季干旱时空分异特征[J]. 高原气象, 2015, 34(1): 30-38.
[7] 岳平, 张强, 赵文, 王胜, 史晋森, 王若安. 黄土高原半干旱草地近地层湍流温湿特征及总体输送系数[J]. 高原气象, 2015, 34(1): 21-29.
[8] 陈星, 余晔, 陈晋北, 张堂堂, 李振朝. 黄土高原半干旱区冬小麦田土壤热通量的计算方法研究[J]. , 2014, 33(6): 1514-1525.
[9] 郝小翠, 张强, 岳平, 杨泽粟. 黄土高原影响LAS观测感热通量的物理因素分析[J]. , 2014, 33(4): 957-966.
[10] 贾东于, 文军, 张堂堂, 席家驹. 黄土高原降水对土壤含水量和导热率的影响[J]. 高原气象, 2014, 33(3): 712-720.
[11] 马晨晨, 余晔, 何建军, 陈星, 解晋. 黄土高原地区两种再分析资料的模拟效果分析[J]. 高原气象, 2014, 33(3): 698-711.
[12] 李德帅1-2,王金艳1,王式功1,李振朝3,尚可政1,史晋森1. 陇中黄土高原半干旱草地地表反照率的变化特征[J]. 高原气象, 2014, 33(1): 89-96.
[13] 张堂堂,文军,李振朝,田辉,刘蓉,席家驹. 基于微波遥感参数估算区域蒸散发的方法研究[J]. 高原气象, 2013, 32(6): 1651-1657.
[14] 王兴1-2,张强3,王胜1. 中国黄土高原半湿润地区陆面温、 湿特性及辐射收支特征研究[J]. 高原气象, 2013, 32(5): 1272-1279.
[15] 王腾蛟1,张镭1,胡向军1-2,赵世强1, 3,王瑾1. WRF模式对黄土高原丘陵地形条件下夏季边界层结构的数值模拟[J]. 高原气象, 2013, 32(5): 1261-1271.
img

QQ群聊

img

官方微信