Please wait a minute...
高级检索
高原气象  2019, Vol. 38 Issue (2): 288-298    DOI: 10.7522/j.issn.1000-0534.2018.00162
论文     
COSMIC掩星资料在青藏高原地区的偏差特征
余小嘉1,2, 杨胜朋1,2, 蒋熹1,2
1. 南京信息工程大学资料同化研究与应用联合中心, 江苏 南京 210044;
2. 南京信息工程大学大气科学学院, 江苏 南京 210044
The Characteristics of COSMIC Radio Occultation Data Biases over Qinghai-Tibetan Plateau
YU Xiaojia1,2, YANG Shengpeng1,2, JIANG Xi1,2
1. Joint Center for Data Assimilation Research and Application, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China;
2. College of Atmospheric Science, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China
 全文: PDF(5347 KB)   HTML ( 2)
摘要: 利用2007-2013年COSMIC(Constellation Observing System for Meteorology,Ionosphere,and Climate)掩星RO(Radio Occutaion)资料和欧洲中期天气预报中心ECMWF(European Centre for Medium-Range Weather Forecasts)分析资料,研究了COSMIC RO探测的大气折射率及其反演的温度和水汽在青藏高原及其周边地区的偏差特征。结果表明,在夏季和秋季,高原,西南季风区和东部平原地区,大气折射率在对流层里均存在系统性的正偏差,其中高原偏差最大,在夏季可达0.7%。冬季和春季,大气折射率在青藏高原对流层中下部有小的正偏差,而在西南季风区和平原地区对流层中下部有明显的负偏差。温度和水汽是折射率的反演产品,折射率的正偏差对应着温度的负偏差和水汽的正偏差。因此夏季高原地区的温度和相对湿度偏差可达-0.5℃和7%。同时,夏季在西南季风区对流层顶出现了11%的相对湿度偏差。对流层下层折射率的负偏差和低层大气多路径效应有关,折射率正偏差和大气中的云水有关。对流层顶附近的相对湿度偏差,则是由于ECMWF模式结果不精确所引入的。
关键词: 青藏高原GPS掩星资料同化折射率    
Abstract: COSMIC (Constellation Observing System for Meteorology, Ionosphere, and Climate) RO (Radio Occutaion) data are collocated in space and time with ECMWF (European Centre for Medium-Range Weather Forecasts) analyses during 7 year period from 2007 to 2013 over Qinghai-Tibetan Plateau and its surrounding areas. Atmospheric refractivity, temperature and relative humidity derived from COSMIC GPS ROs are compared with those of the ECMWF analysis. It is found the COSMIC GPS RO refractivity observations are systematically greater than the refractivity calculated from ECMWF analyses in summer and autumn. The fractional refractivity bias over Qinghai-Tibetan Plateau is larger than that over southwest monsoon area and plain with the value of 0.7%. In winter and spring the refractivity bias over Qinghai-Tibetan Plateau is positive, while that over southwest monsoon area and plain is negative. Temperature and water vapor of GPS RO are derived from refractivity. The positive bias of refractivity is highly correlated with positive water vapor bias and negative temperature bias. The bias of relative humidity and temperature are 7% and 0.5℃, respectively over Qinghai-Tibetan Plateau. It is noted that relative humidity bias can reach 11% at the top of troposphere over southwest monsoon area.The lower tropospheric negative refractivity biases are related to the multi-path effect, and the positive biases in the middle and lower troposphere are the result of the influence of cloud. The occurrence of relative humidity bias near the tropopause is due to the inaccuracy of the ECMWF mode results.
Key words: Qinghai-Tibetan Plateau    GPS RO    data assimilation    atmospheric refractivity
收稿日期: 2018-08-28 出版日期: 2019-04-22
:  P405  
基金资助: 国家自然科学基金项目(91337218,41875032,41871053);公益性行业(气象)科研专项(GYHY201406008);江苏省“青蓝工程”项目
通讯作者: 杨胜朋(1977-),男,湖北浠水人,副教授,主要从事GPS掩星气象学的研究.E-mail:yangshengp@nuist.edu.cn     E-mail: yangshengp@nuist.edu.cn
作者简介: 余小嘉(1993-),女,湖北秭归人,硕士研究生,主要从事GPS掩星气象学研究.E-mail:yuxiaojia@nuist.edu.cn
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
余小嘉
杨胜朋
蒋熹

引用本文:

余小嘉, 杨胜朋, 蒋熹. COSMIC掩星资料在青藏高原地区的偏差特征[J]. 高原气象, 2019, 38(2): 288-298.

YU Xiaojia, YANG Shengpeng, JIANG Xi. The Characteristics of COSMIC Radio Occultation Data Biases over Qinghai-Tibetan Plateau. Plateau Meteorology, 2019, 38(2): 288-298.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2018.00162        http://www.gyqx.ac.cn/CN/Y2019/V38/I2/288

Anthes R A, Bernhardt P A, Chen Y, et al, 2008. The COSMIC/FORMOSAT-3-Mission early results[J]. Bulletin of Then American Meteorological Society, 89(3):313-333. DOI:10.1175/BAMS-89-3-313.
Anthes R A, 2011. Exploring Earth's atmosphere with radio occultation:contributions to weather, climate and space weather[J]. Atmospheric Measurement Techniques, 4(6):1077-1103. DOI:10.5194/amt-4-1077-2011.
Bao X, Zhang F, 2013. Evaluation of NCEP-CFSR, NCEP-NCAR, ERA-Interim, and ERA-40 reanalysis datasets against independent sounding observations over the Tibetan Plateau[J]. Journal of Climate, 26(1):206-214. DOI:10.1175/JCLI-D-12-00056.1.
Boos W R, Kuang Z, 2010. Dominant control of the South Asian monsoon by orographic insulation versus plateau heating[J]. Nature, 463(7278):218-222. DOI:10.1038/nature08707.
Borsche M, Kirchengast G, Foelsche U, 2007. Tropical tropopause climatology as observed with radio occultation measurements from CHAMP compared to ECMWF and NCEP analyses[J]. Geophysical Research Letters, 34(3):L03702. DOI:10.1029/2006GL027918.
Chen X L, Ma Y M, Kelder H, et al, 2011. On the behaviour of the tropopause folding events over the Tibetan Plateau[J]. Atmospheric Chemistry and Physics, 11(10):5113-5122. DOI:10.5194/acp-11-5113-2011.
Duan A M, Wu G X, 2005. Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia[J]. Climate Dynamics, 24(7-8):793-807. DOI:10.1007/s00382-004-0488-8.
Feng S, Fu Y, Xiao Q, 2011. Is the tropopause higher over the Tibetan Plateau? Observational evidence from Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) data[J]. Journal of Geophysical Research Atmospheres, 116(D21):21121. DOI:10.1029/2011JD016140.
Foelsche U, Borsche M, Steiner A K, et al, 2008. Observing upper troposphere-lower stratosphere climate with radio occultation data from the CHAMP satellite[J]. Climate Dynamics, 31(1):49-65. DOI:10.1007/s00382-007-0337-7.
Forster P M D F, Shine K P, 1999. Stratospheric water vapour changes as a possible contributor to observed stratospheric cooling[J]. Geophysical Research Letters, 26(21):3309-3312. DOI:10.1029/1999GL010487.
Fu R, Hu Y L, Wright J S, et al, 2006. Short circuit of water vapor and polluted air to the global stratosphere by convective transport over the Tibetan Plateau[J]. Proceedings of The National Academy of Sciences of The United States of America, 103(15):5664-5669. DOI:10.1073/pnas. 0601584103.
Hajj G A, Ao C O, Iijima B A, et al, 2002. CHAMP and SAC-C atmospheric occultation results and intercomparisons[J]. Journal of Geophysical Research Atmospheres, 109(D6):6109-6154. DOI:10.1029/2003JD003909.
Ho S P, 2009. Estimating the uncertainty of using GPS radio occultation data for climate monitoring:Inter-comparison of CHAMP refractivity climate records 2002-2006 from different data centers[J]. Journal of Geophysical Research Atmospheres, 114(D23):1470-1478. DOI:10.1029/2009JD011969.
Kursinski E R, Hajj G A, Bertiger W I, et al, 1996. Initial results of radio occultation observations of Earth's atmosphere using the global positioning system[J]. Science, 271(5252):1107-1110. DOI:10.1126/science. 271.5252.1107.
Kursinski E R, Hajj G A, Schofield J T, et al, 1997. Observing Earth's atmosphere with radio occultation measurements using the Global Positioning System[J]. Journal of Geophysical Research Atmospheres, 102(D19):23429-23465. DOI:10.1126/science. 271.5252.1107.
Rocken C, Anthes R, Exner M, et al, 1997. Analysis and validation of GPS/MET data in the neutral atmosphere[J]. Journal of Geophysical Research Atmospheres, 1022(D25):29849-29866. DOI:10.1029/97JD02400.
Rusticucci M M, Kousky E, 2002. A comparative study of maximum and minimum temperatures over Argentina:NCEP-NCAR reanalysis versus station data[J]. Journal of Climate, 15(15):2089-2101. DOI:10.1175/1520-0442(2002)015<2089:acsoma>2.0. co; 2.
Santer B D, Sausen R, Wigley T M L, et al, 2003. Behavior of tropopause height and atmospheric temperature in models, reanalyses, and observations:Decadal changes[J]. Journal of Geophysical Research Atmospheres, 108(D1):4002. DOI:10.1029/2002jd002258.
Smith S R, Legler D M, Verzone K V, 2001. Quantifying uncertainties in NCEP reanalyses using high-quality research vessel observations[J]. Journal of Climate, 14(20):4062-4072. DOI:10.1175/1520-0442(2001)0142.0. CO; 2.
Sokolovskiy S, 2003. Effect of superrefraction on inversions of radio occultation signals in the lower troposphere[J]. Radio Science, 38(3):1058. DOI:10.1029/2002rs002728.
Son S, Tandon N F, Polvani L M, 2011. The fine-scale structure of the global tropopause derived from COSMIC GPS radio occultation measurements[J]. Journal of Geophysical Research Atmospheres, 116(D2):D20113. DOI:10.1029/2011JD016030.
Steiner A K, Kirchengast G, Ladreiter H P, 1998. Inversion, error analysis, and validation of GPS/MET occultation data[J]. Annales Geophysicae, 17(1):122-138. DOI:10.1007/s00585-999-0122-5.
Steiner A K, Lackner B C, Ladstädter F, 2011. GPS radio occultation for climate monitoring and change detection[J]. Radio Science, 46(6):RS0D24. DOI:10.1029/2010RS004614.
Tian H, Tian W, Luo J, et al, 2017. Climatology of cross-tropopause mass exchange over the Tibetan Plateau and its surroundings[J]. International Journal of Climatology, 37(11):3999-4014. DOI:10.1002/joc. 4970.
Wang A, Zeng X, 2012. Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau[J]. Journal of Geophysical Research Atmospheres, 117(D5):D05102. DOI:10.1029/2011JD016553.
Ware R, Rocken C, Solheim F, et al, 1996. GPS sounding of the atmosphere from low earth orbit:Preliminary Results[J]. Journal of Geophysical Research Atmospheres, 77(1):19-40. DOI:10.1175/1520-0477(1996)077<0019:GSOTAF>2.0. CO; 2.
Wickert J, Reigber C, Beyerle G, et al, 2001. Atmosphere sounding by GPS radio occultation:First results from CHAMP[J]. Geophysical Research Letters, 28(17):3263-3266. DOI:10.1029/2001GL013117.
Wickert J, Schmidt T, Beyerle G, et al, 2004. The radio occultation experiment aboard CHAMP:Operational data analysis and validation of vertical atmospheric profiles[J]. Journal of the Meteorological Society of Japan, 82(1B):381-395. DOI:10.2151/jmsj. 2004.381.
World Meteorological Organization, 1957. Meteorology-A three dimensional science, WMO Bull[S]. 6:134-138, Geneva, Switzerland.
Xu X, Lu C, Shi X, et al, 2008. World water tower:An atmospheric perspective[J]. Geophysical Research Letters, 35(20):525-530. DOI:10.1029/2008GL035867.
Yang K, Wu H, Qin J, et al, 2014. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle:A review[J]. Global & Planetary Change, 112(1):79-91. DOI:10.1016/j. gloplacha. 2013.12.001.
Yang S, Zou X, 2012. Assessments of cloud liquid water contributions to GPS radio occultation refractivity using measurements from COSMIC and CloudSat[J]. Journal of Geophysical Research Atmospheres, 117(D6):D06219. DOI:10.1029/2011JD016452.
Yang S, Zou X, 2013. Temperature profiles and lapse rate climatology in altostratus and nimbostratus clouds derived from GPS RO Data[J]. Journal of Climate, 26(16):6000-6014. DOI:10.1175/JCLI-D-12-00646.1.
Yang S, Zou X, 2017a. Dependence of positive refractivity bias of GPS RO cloudy profiles on cloud fraction along GPS RO limb tracks[J]. Gps Solutions, 21(2):499-509. DOI:10.1007/s10291-016-0541-1.
Yang S, Zou X, 2017b. Lapse rate characteristics in ice clouds inferred from GPS RO and CloudSat observations[J]. Atmospheric Research, 197(1):105-112. DOI:10.1016/j. atmosres. 2017.06.024.
You Q, Fraedrich K, Ren G, et al, 2013. Variability of temperature in the Tibetan Plateau based on homogenized surface stations and reanalysis data[J]. International Journal of Climatology, 33(6):1337-1347. DOI:10.1002/joc. 3512.
Zhan R F, Li J P, 2007. Influence of atmospheric heat sources over the Tibetan Plateau and the Tropical Western North Pacific on the Inter-Decadal Variations of the Stratosphere-Troposphere Exchange (STE) of Water Vapor[J]. Science in China Series D-earth Sciences, 51(8):1179-1193. DOI:10.1007/s11430-008-0082-8.
Zhao T B, Fu C B, 2006. Comparison of products from ERA-40, NCEP-2, and CRU with station data for summer precipitation over China[J]. Advances in Atmospheric Sciences, 23(4):593-604. DOI:10.1007/s00376-006-0593-1.
Zou X, Zeng Z, 2006. A quality control procedure for GPS radio occultation data[J]. Journal of Geophysical Research Atmospheres, 111(D2):D02112. DOI:10.1029/2005JD005846.
Zou X, Vandenberghe F, Wang B, et al, 1999. A ray-tracing operator and its adjoint for the use of GPS/MET refraction angle measurements[J]. Journal of Geophysical Research Atmospheres, 104(D18):22301-22318. DOI:10.1029/1999JD900450.
Zou X, Yang S, Ray P S, 2012. Impacts of ice clouds on GPS radio occultation measurements[J]. Journal of the Atmospheric Sciences, 69(69):3670-3682. DOI:10.1175/jas-d-11-0199.1.
郝民, 郭英华, 马再忠, 2010. 一次降水天气过程的GPS 掩星资料在GSI 同化系统中的应用研究[J]. 高原气象, 29(1):164-174.
何金海, 徐海明, 钟珊珊, 等, 2011. 青藏高原大气热源特征及其影响和可能机制[M]. 北京:气象出版社, 243.
敬文琪, 崔园园, 刘瑞霞, 等, 2017. 影响长江中下游夏季降水的青藏高原水汽抽吸作用和水汽路径的定量化研究[J]. 高原气象, 36(4):900-911. DOI:10.7522/j. issn. 1000-0534.2016.00084.
刘维成, 张强, 傅朝, 2017. 近55年来中国西北地区降水变化特征及影响因素分析[J]. 高原气象, 36(6):1533-1545. DOI:10.7522/j. issn. 1000-0534.2017.00081.
马玉芬, 李曼, 史莲梅, 2013. 单个掩星事件湿度场资料同化实验[J]. 干旱区研究, 30(6):1113-1121. DOI:10.13866/j. azr. 2013.06.028.
钱正安, 宋敏红, 吴统文, 等, 2017. 世界干旱气候研究动态及进展综述(Ⅰ):若干主要干旱区国家的研究动态及联合国的贡献[J]. 高原气象, 36(6):1433-1456. DOI:10.7522/j. issn. 1000-0534.2017.00075.
孙颖, 丁一汇, 2002. 青藏高原热源异常对1999年东亚夏季风异常活动的影响[J]. 大气科学, 26(6):817-828. DOI:10.3878/j. issn. 1006-9895.2002.06.10.
吴国雄, 张永生, 1998. 青藏高原的热力和机械强迫作用以及亚洲季风的爆发:I. 爆发地点[J]. 大气科学, 22(6):825-838. DOI:10.3878/j. issn. 1006-9895.1998.06.03.
夏昕, 任荣彩, 吴国雄, 等, 2016. 青藏高原周边对流层顶的时空分布、热力成因及动力效应分析[J]. 气象学报, 74(4):525-541. DOI:10.11676/qxxb2016.036.
徐桂荣, 乐新安, 张文刚, 等, 2016. COSMIC掩星资料反演青藏高原大气廓线与探空观测的对比分析[J]. 暴雨灾害, 35(4):315-325. DOI:10.3969/j. issn. 1004-9045.2016.04.003.
[1] 刘菊菊, 游庆龙, 王楠. 青藏高原夏季云水含量及其水汽输送年际异常分析[J]. 高原气象, 2019, 38(3): 449-459.
[2] 陈月, 李跃清, 范广洲, 陈宇航. 青藏高原大气蕴含潜热时空分布特征研究[J]. 高原气象, 2019, 38(3): 460-473.
[3] 王奕丹, 胡泽勇, 孙根厚, 谢志鹏, 严晓强, 郑汇璇, 付春伟. 高原季风特征及其与东亚夏季风关系的研究[J]. 高原气象, 2019, 38(3): 518-527.
[4] 郑汇璇, 胡泽勇, 孙根厚, 谢志鹏, 严晓强, 王奕丹, 付春伟. 那曲高寒草地总体输送系数及地面热源特征[J]. 高原气象, 2019, 38(3): 497-506.
[5] 慕熙昱, 徐琪, 潘玉洁, 孙世玮, 李昕, 黄安宁. 雷达径向速度资料同化中不同坐标转换方案的对比试验[J]. 高原气象, 2019, 38(3): 625-635.
[6] 明绍慧, 秦正坤, 黄瑜. 卫星资料揭示的青藏高原对流层上层温度气候演变趋势特征[J]. 高原气象, 2019, 38(2): 264-277.
[7] 杜牧云, 王斌, 肖艳姣, 付志康, 周伶俐. X波段双线偏振雷达青藏高原观测资料质量分析[J]. 高原气象, 2019, 38(2): 278-287.
[8] 常姝婷, 刘玉芝, 华珊, 贾瑞. 全球变暖背景下青藏高原夏季大气中水汽含量的变化特征[J]. 高原气象, 2019, 38(2): 227-236.
[9] 于涵, 张杰, 刘诗梦. 青藏高原地表非绝热加热模态及其与中国北方环流异常的联系[J]. 高原气象, 2019, 38(2): 237-252.
[10] 严晓强, 胡泽勇, 孙根厚, 谢志鹏, 王奕丹, 郑汇璇. 那曲高寒草地长时间地面热源特征及其气候影响因子分析[J]. 高原气象, 2019, 38(2): 253-263.
[11] 朱平, 俞小鼎. 青藏高原东北部一次罕见强对流天气的中小尺度系统特征分析[J]. 高原气象, 2019, 38(1): 1-13.
[12] 屠妮妮, 郁淑华, 高文良. 风场对高原涡在河套地区打转影响的初步分析[J]. 高原气象, 2019, 38(1): 66-77.
[13] 胡梦玲, 游庆龙. 青藏高原南侧经圈环流变化特征及其对降水影响分析[J]. 高原气象, 2019, 38(1): 14-28.
[14] 王玉琦, 鲍艳, 南素兰. 青藏高原未来气候变化的热动力成因分析[J]. 高原气象, 2019, 38(1): 29-41.
[15] 刘田, 阳坤, 秦军, 田富强. 青藏高原中、东部气象站降水资料时间序列的构建与应用[J]. 高原气象, 2018, 37(6): 1449-1457.
img

QQ群聊

img

官方微信