Please wait a minute...
高级检索
高原气象  2019, Vol. 38 Issue (6): 1158-1171    DOI: 10.7522/j.issn.1000-0534.2019.00001
论文     
青藏高原季风的季节内振荡特征
陈悦1,2,3, 李文铠1, 郭维栋4
1. 南京信息工程大学气象灾害预报预警与评估协同创新中心/气候与环境变化国际合作联合实验室/气象灾害教育部重点实验室, 江苏 南京 210044;
2. 中国科学院大气物理研究所季风系统研究中心, 北京 100029;
3. 中国科学院大学, 北京 100049;
4. 南京大学气候与全球变化研究院/南京大学大气科学学院, 江苏 南京 210023
Characteristics of the Intraseasonal Oscillation of Qinghai-Tibetan Plateau Monsoon
CHEN Yue1,2,3, LI Wenkai1, GUO Weidong4
1. Key Laboratory of Meteorological Disaster, Ministry of Education(KLME)/Joint International Research Laboratory of Climate and Environment Change(ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters(CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China;
2. Center for Monsoon System Research Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China;
3. University of Chinese Academy of Sciences, Beijing 100049, China;
4. Institute for Climate and Global Change Research, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, Jiangsu, China
 全文: PDF(36038 KB)   HTML ( 21)
摘要: 利用ERA-Interim再分析资料,采用集合经验模态分解、功率谱分析、合成分析等方法,研究了青藏高原(下称高原)季风指数(Qinghai-Tibetan Plateau Monsoon Index,QTPMI)所表征的青藏高原季风季节内振荡特征,结果表明:(1)高原季风变率的季节内分量(10~90天)在总变率中占据了可观的比例,QTPMI的季节内分量可解释总变率的26%,在夏季的解释方差可达37%;(2)QTPMI的季节内振荡与其相应周期的低频大气环流异常(对流层中高层异常气旋、反气旋)东移经过高原上空过程相联系,且异常信号的强度在向东传播的过程中存在增强-减弱-增强-减弱的演变特征(即到达高原前增强,在高原上东移减弱,移出高原后增强,继续东移入海时减弱);(3)高原夏季风期间环流与大气热源在季节内振荡上有一致性,呈现高原夏季风强(弱),大气热源强(弱)的关系。
关键词: 青藏高原季风大气季节内振荡大气热源合成分析    
Abstract: The intraseasonal variability of Qinghai-Tibetan Plateau monsoon (QTPM) has been largely ignored. Based on the ERA-Interim reanalysis data, the characteristics of the intraseasonal oscillation of QTPM revealed by QTPM index (QTPMI) are analyzed by using Ensemble Empirical Mode Decomposition, spectrum and composite analysis. The results show that:(1) The intraseasonal component (10~90 days) of QTPM is dominant for total variability. The intraseasonal component explains approximate 26% of the total variability, and even more dominant in summer (37%). (2) The intraseasonal variability of QTPM variability is associated with the eastward movement of the low-frequency atmospheric circulation anomalies (i. e., the middle-and upper-tropospheric anomalous cyclones and anticyclones) over the plateau. During the eastward propagation of the anomalous signal, the intensity of the anomalous signal has the evolutional characteristics of strengthening-weakening-strengthening-weakening (for example, strengthening before reaching the plateau, weakening eastward on the plateau, strengthening after moving out of the plateau, and weakening when moving eastward into the sea). (3) There is consistency between the circulation and the atmospheric heat source during summer QTPM, showing the relationship between the summer QTPM strengthening (weakening) and the atmospheric heat source strengthening (weakening) over the Qinghai-Tibetan Plateau.
Key words: Qinghai-Tibetan Plateau monsoon    atmospheric intraseasonal oscillation    atmospheric heat source    composite analysis
收稿日期: 2018-09-15 出版日期: 2019-11-25
ZTFLH:  P462.4+1  
基金资助: 国家重点研发计划项目(2018YFC1505804);南京信息工程大学人才启动经费项目
通讯作者: 李文铠(1988-),男,河北邯郸人,讲师,主要从事大气季节内振荡研究.E-mail:wenkai@nuist.edu.cn     E-mail: wenkai@nuist.edu.cn
作者简介: 陈悦(1996-),女,安徽无为人,博士研究生,主要从事青藏高原气象学研究.E-mail:chenyue181@mails.ucas.ac.cn
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈悦
李文铠
郭维栋

引用本文:

陈悦, 李文铠, 郭维栋. 青藏高原季风的季节内振荡特征[J]. 高原气象, 2019, 38(6): 1158-1171.

CHEN Yue, LI Wenkai, GUO Weidong. Characteristics of the Intraseasonal Oscillation of Qinghai-Tibetan Plateau Monsoon. Plateau Meteorology, 2019, 38(6): 1158-1171.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2019.00001        http://www.gyqx.ac.cn/CN/Y2019/V38/I6/1158

Chan J C L, Ai W X, Xu J J, 2002. Mechanisms responsible for the maintenance of the 1998 South China Sea summer monsoon[J]. Journal of the Meteorological Society of Japan, 80(5):1103-1113.
Chen L X, Reiter E R, Feng Z Q, 1985. The atmospheric heat source over the Tibetan Plateau:May-August 1979[J]. Monthly Weather Review, 113(10):1771-1790.
Chen T C, Chen J M, 1993. The 10-20-day mode of the 1979 Indian monsoon:Its relation with the time variation of monsoon rainfall[J]. Monthly Weather Review, 121(9):2465-2482.
Duan A M, Wu G X, 2005.Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia[J]. Climate Dynamics, 24(7/8):793-807. DOI:10.1007/s00382-004-0488-8.
Fu C, Fletcher J O, 1985. The relationship between Tibet-tropical ocean thermal contrast and interannual variability of Indian monsoon rainfall[J]. Journal of Climate and Applied Meteorology, 24(8):841-847.
Ge F, Sielmann F, Zhu X H, et al, 2017. The link between Tibetan Plateau monsoon and Indian summer precipitation:A linear diagnostic perspective[J]. Climate Dynamics, 49(11/12):4201-4215. DOI:10.1007/s00382-017-3585-1.
He H Y, McGinnis J W, Song Z S, et al, 1987. Onset of the Asian summer monsoon in 1979 and the effect of the Tibetan Plateau[J]. Monthly Weather Review, 115(9):1966-1995.
Kiranmayi L, Bhat G S, 2009. Quasi-periodic, global oscillations in sea level pressure on intraseasonal timescales[J]. Climate Dynamics, 32(7/8):925-934. DOI:10.1007/s00382-008-0413-7.
Knutson T R, Weickmann K M, Kutzbach J E, 1986. Global-scale intraseasonal oscillations of outdoing longwave radiation and 250 mb zonal wind during northern hemisphere summer[J]. Monthly Weather Review, 114(3):605-623.
Li W K, Hsu P C, He J H, et al, 2016a. Extended-range forecast of spring rainfall in southern China based on the Madden-Julian oscillation[J]. Meteorology and Atmospheric Physics, 128(3):331-345. DOI:10.1007/s00703-015-0418-9.
Li W K, Guo W D, Hsu P C, et al, 2016b. Influence of the Madden-Julian oscillation on Tibetan Plateau snow cover at the intraseasonal time-scale[J]. Scientific Reports, 6:30456. DOI:10.1038/srep30456.
Li W K, Guo W D, Qiu B, et al, 2018. Influence of Tibetan Plateau snow cover on East Asian atmospheric circulation at medium-range time scales[J]. Nature Communications, 9:4243. DOI:10.1038/s41467-018-06762-5.
Lin H, Brunet G, Derome J, 2009. An observed connection between the North Atlantic oscillation and the Madden-Julian oscillation[J]. Journal of Climate, 22(2):364-380. DOI:10.1175/2008JCLI2515.1.
Liu Y M, Bao Q, Duan A M, et al, 2007. Recent progress in the impact of the Tibetan Plateau on climate in China[J]. Advances in Atmospheric Sciences, 24(6):1060-1076. DOI:10.1007/s00376-007-1060-3.
Madden R A, Julian P R, 1971. Detection of a 40-50 day oscillation in zonal wind in tropical pacific[J]. Journal of Atmospheric Sciences, 28(5):702-708.
Mao J Y, Wu G X, 2006. Intraseasonal variations of the Yangtze rainfall and its related atmospheric circulation features during the 1991 summer[J]. Climate Dynamics, 27(7/8):815-830. DOI:10.1007/s00382-006-0164-2.
Nitta T, 1983. Observational study of heat sources over the eastern Tibetan Plateau during the summer monsoon[J]. Journal of Meteorological Society of Japan, 61(4):590-605.
Tang M C, Reiter E R, 1984. Plateau monsoons of the northern hemisphere:A comparison between North America and Tibet[J]. Monthly Weather Review, 112(4):617-637.
Wang M R, Duan A M, 2015. Quasi-biweekly oscillation over the Tibetan Plateau and its link with the Asian summer monsoon[J]. Journal of Climate, 28(12):4921-4940. DOI:10.1175/JCLI-D-14-00658.1.
Wu G X, Liu Y M, He B, et al, 2012. Thermal controls on the Asian summer monsoon[J]. Scientific Reports, 2:404. DOI:10.1038/srep00404.
Wu G X, Zhang Y S, 1998. Tibetan Plateau forcing and the timing of the monsoon onset over South Asia and the South China Sea[J]. Monthly Weather Review, 126(4):913-927.
Wu Z H, Huang N E, 2009. Ensemble empirical mode decomposition:a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 1(1):1-41.
Xun X Y, Hu Z Y, Ma Y M, 2012. The dynamic plateau monsoon index and its association with general circulation anomalies[J]. Advances in Atmospheric Sciences, 29(6):1249-1263.
Yanai M, Esbensen S, Chu J H, 1973. Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets[J]. Journal of Atmospheric Sciences, 30(4):611-627.
Yanai M, Li C, Song Z, 1992. Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian Summer Monsoon[J]. Journal of Meteorological Society of Japan, 70:319-351.
Yasunari T, 1979. Cloudiness fluctuations associated with the northern hemisphere summer monsoon[J]. Journal of Meteorological Society of Japan, 57(3):227-242.
Ye D Z, Wu G X, 1998. The role of the heat source of the Tibetan Plateau in the general circulation[J]. Meteorology and Atmospheric Physics, 67(1/4):181-198.
Zhang P F, Li G P, Fu X H, et al, 2014. Clustering of Tibetan Plateau vortices by 10-30-day intraseasonal oscillation[J]. Monthly Weather Review, 142(1):290-300.
Zhao H X, Moore G W K, 2004. On the relationship between Tibetan snow cover, the Tibetan plateau monsoon and the Indian summer monsoon[J]. Geophysical Research Letters, 31:L14204. DOI:10.1029/2004GL020040.
Zhao P, Chen L X, 2001. Interannual variability of atmospheric heat source/sink over the Qinghai-Xizang (Tibetan) Plateau and its relation to circulation[J]. Advances in Atmospheric Sciences, 18(1):106-116. DOI:10.1007/s00376-001-0007-3.
Zhou J, Wen J, Wang X, et al, 2016. Analysis of the Qinghai-Xizang Plateau monsoon evolution and its linkages with soil moisture[J]. Remote Sensing, 8:493. DOI:10.3390/rs8060493.
白虎志, 谢金南, 李栋梁, 2001. 近40年青藏高原季风变化的主要特征[J]. 高原气象, 20(1):22-27.
岑思弦, 巩远发, 赖欣, 等, 2014. 青藏高原东部与其北侧热力差异与高原季风及长江流域夏季降水的关系[J]. 气象学报, 72(2):256-265.
陈少勇, 林纾, 王劲松, 等, 2011. 中国西部雨季特征及高原季风对其影响的研究[J]. 中国沙漠, 31(3):765-773.
段安民, 刘屹岷, 吴国雄, 2003.4-6月青藏高原热状况与盛夏东亚降水和大气环流的异常[J]. 中国科学(地球科学), 33(10):997-1004.
段丽君, 段安民, 胡文婷, 等, 2017.2014年夏季青藏高原狮泉河与林芝降水低频振荡及陆-气过程日变化特征[J]. 大气科学, 41(4):767-783.
方韵, 范广洲, 赖欣, 等, 2016. 青藏高原季风强弱与北半球西风带位置变化的关系[J]. 高原气象, 35(6):1419-1429. DOI:10.7522/j.issn.1000-0534.2015.00106.
华维, 范广洲, 王炳赟, 2012. 近几十年青藏高原夏季风变化趋势及其对中国东部降水的影响[J]. 大气科学, 36(4):784-794.
琚建华, 赵尔旭, 2005.东亚夏季风区的低频振荡对长江中下游旱涝的影响[J]. 热带气象学报, 21(2):163-171.
李崇银, 1991.30~60天大气振荡的全球特征[J]. 大气科学, 15(3):66-76.
李文铠, 何金海, 祁莉, 等, 2014. MJO对华南前汛期降水的影响及其可能机制[J]. 热带气象学报, 30(5):983-989.
李跃清, 1996.1981和1982年夏半年高原地区低频振荡与南亚高压活动[J]. 高原气象, 15(3):276-281.
刘炜, 周顺武, 智海, 2014.1998年夏季青藏高原东南部降水30~60 d低频振荡特征[J]. 气象, 40(5):530-540.
刘屹岷, 王子谦, 卓海峰, 等, 2017. 夏季亚洲大地形双加热及近对流层顶位涡强迫的激发Ⅱ:伊朗高原-青藏高原感热加热[J]. 中国科学(地球科学), 47(3):354-366.
龙妍妍, 范广洲, 李飞, 等, 2018. 高原夏季风对中国夏季极端降水的影响研究[J]. 高原气象, 37(1):1-12. DOI:10.7522/j.issn.1000-0534.2017.00010.
马振峰, 高文良, 2003. 青藏高原季风年际变化与长江上游气候变化的联系[J]. 高原气象, 22(增刊):8-16.
庞轶舒, 马振峰, 杨淑群, 等, 2017. 盛夏高原季风指数的探讨及其对四川盆地降水的影响[J]. 高原气象, 36(4):886-899. DOI:10.7522/j.issn.1000-0534.2016.00027.
齐冬梅, 李跃清, 2007. 高原季风研究主要进展及其科学意义[J]. 干旱气象, 25(4):74-79.
齐文文, 张百平, 庞宇, 等, 2013. 基于TRMM数据的青藏高原降水的空间和季节分布特征[J]. 地理科学, 33(8):999-1005.
孙国武, 陈葆德, 1988. 青藏高原上空大气低频波的振荡及其经向传播[J]. 大气科学, 12(3):250-256.
汤懋苍, 1962. 高原季风与华西气候[C]. 甘肃省气象学会年会报告论文.
汤懋苍, 1995. 高原季风的年代际振荡及其原因探讨[J]. 气象科学, 15(4):64-68.
汤懋苍, 梁娟, 邵明镜, 等, 1984. 高原季风年际变化的初步分析[J]. 高原气象, 3(3):76-82.
汤懋苍, 沈志宝, 陈有虞, 1979. 高原季风的平均气候特征[J]. 地理学报, 34(1):33-42.
田俊, 马振峰, 范广洲, 2010. 高原季风对500 hPa中纬度西风带活动的影响[J]. 成都信息工程学院学报, 25(1):61-68.
万超, 范广洲, 华维, 等, 2015. 青藏高原夏季风和南海夏季风低频振荡的关系[J]. 高原气象, 34(2):318-326. DOI:10.7522/j.issn.1000-0534.2014.00020.
王黎娟, 葛静, 2016. 夏季青藏高原大气热源低频振荡与南亚高压东西振荡的关系[J]. 大气科学, 40(4):853-863.
王跃男, 陈隆勋, 何金海, 等, 2009. 夏季青藏高原热源低频振荡对我国东部降水的影响[J]. 应用气象学报, 20(4):419-427.
吴钩, 白爱娟, 2016. 青藏高原季风环流情况与中亚季风降水特征分析[J]. 成都信息工程大学学报, 31(1):76-85.
谢安, 叶谦, 陈隆勋, 1989. 青藏高原及其附近地区大气周期振荡在OLR资料上的反映[J]. 气象学报, 47(3):272-278.
徐国强, 朱乾根, 2000.1998年青藏高原大气低频振荡的结构特征分析[J]. 南京气象学院学报, 23(4):505-513.
徐丽娇, 李栋梁, 胡泽勇, 2010. 青藏高原积雪日数与高原季风的关系[J]. 高原气象, 29(5):1093-1101.
徐淑英, 高由禧, 1962. 西藏高原的季风现象[J]. 地理学报, 28(2):111-123.
徐祥德, 陶诗言, 王继志, 等, 2002. 青藏高原-季风水汽输送"大三角扇型"影响域特征与中国区域旱涝异常的关系[J]. 气象学报, 60(3):257-266.
荀学义, 胡泽勇, 崔桂凤, 等, 2018. 青藏高原季风对我国西北干旱区气候的影响[J]. 气候与环境研究, 23(3):311-320.
叶笃正, 高由禧, 1979. 青藏高原气象学[M]. 北京:科学出版社.
叶笃正, 罗四维, 朱抱真, 1957. 西藏高原及其附近的流场结构和对流层大气的热量平衡[J]. 气象学报, 28(2):108-121.
于浩慧, 祁莉, 何金海, 2018. 非ENSO事件次年大西洋海温异常对夏季青藏高原大气热源准双周低频活跃度的影响[J]. 高原气象, 37(3):602-613. DOI:10.7522/j.issn.1000-0534.2017.00082.
曾钰婵, 范广洲, 赖欣, 等, 2016. 青藏高原季风活动与大气热源/汇的关系[J]. 高原气象, 35(5):1148-1156. DOI:10.7522/j.issn.1000-0534.2015.00093.
张菁, 范广洲, 赖欣, 等, 2017. 南亚高压上下高原时间及其与高原季风建立早晚的关系[J]. 气象科学, 37(1):30-40.
张鹏飞, 李国平, 王旻燕, 等, 2010. 青藏高原低涡群发性与10~30天大气低频振荡关系的初步研究[J]. 高原气象, 29(5):1102-1110.
张少波, 吕世华, 奥银焕, 等, 2015. 基于风场季节变率的高原季风指数的定义及应用[J]. 高原气象, 34(4):881-889. DOI:10.7522/j.issn.1000-0534.2015.00067.
周娟, 文军, 王欣, 等, 2017. 青藏高原季风演变及其与土壤湿度的相关分析[J]. 高原气象, 36(1):45-56. DOI:10.7522/j.issn.1000-0534.2016.00003.
周懿, 范广洲, 华维, 等, 2015. 高原季风的分布特征及其指数对比分析[J]. 高原气象, 34(6):1517-1530. DOI:10.7522/j.issn.1000-0534.2014.00111.
朱乾根, 何金海, 1985. 亚洲季风建立及其中期振荡的高空环流特征[J]. 热带气象, 1(1):9-18.
[1] 陈丹, 周长艳, 齐冬梅. 夏季青藏高原及周边大气热源与四川盆地暴雨的关系[J]. 高原气象, 2019, 38(6): 1149-1157.
[2] 池再香, 胡跃文, 夏阳, 胡祖恒, 杜正静, 严锐. 云贵高原东部两次典型气象干旱年汛期环流特征对比[J]. 高原气象, 2019, 38(3): 528-538.
[3] 许田田, 范广洲, 张永莉, 赖欣, 王炳赟. 东亚与太平洋地区热力差异对东亚季风的影响[J]. 高原气象, 2018, 37(6): 1643-1654.
[4] 张亚男, 段旭. 冬季1月昆明准静止锋进退及维持的结构特征[J]. 高原气象, 2018, 37(5): 1375-1387.
[5] 程译萱, 范广洲, 张永莉, 赖欣. 青藏高原及周边地区垂直温度梯度特征及其成因分析[J]. 高原气象, 2018, 37(2): 333-348.
[6] 李黎, 刘海文, 吕世华. 春季西南低涡年际和年代际变化特征分析[J]. 高原气象, 2017, 36(6): 1512-1520.
[7] 赵佳玉, 马振峰, 范广洲. 热带大气季节内振荡对华西秋雨的影响[J]. 高原气象, 2016, 35(6): 1487-1497.
[8] 郑峰, 曾智华, 雷小途, 陈联寿. 中国近海突然增强台风统计分析[J]. 高原气象, 2016, 35(1): 198-210.
[9] 敖婷, 李跃清. 夏季青藏高原及周边热力特征与东亚降水的区域关系[J]. 高原气象, 2015, 34(5): 1204-1216.
[10] 岑思弦, 巩远发, 赖欣. 青藏高原及其周围地区大气热源对川渝盆地夏季降水的影响[J]. , 2014, 33(5): 1182-1189.
[11] 杜小玲1-2,杨静1,彭芳1,许可1. 贵州望谟初夏暴雨环境场和物理量场合成分析[J]. 高原气象, 2013, 32(5): 1400-1413.
[12] 孙建元1-2,朱伟军1,姚秀萍3-4. 东风带扰动热力特征及其对西太副高东退影响的个例分析[J]. 高原气象, 2013, 32(3): 707-717.
[13] 洪芳玲, 李丽平, 王盘兴, 罗璇. 夏季南亚高压和印度低压环流指数及其与大气热源的关系[J]. 高原气象, 2012, 31(5): 1234-.
[14] 郑明华;付遵涛*;陈哲. 北极臭氧损耗对东亚中高纬地区初春地面气温影响的转折点分析[J]. 高原气象, 2010, 29(2): 412-419.
[15] 毛文书;巩远发;周强. 青藏高原大气热源与江淮梅雨异常的关系[J]. 高原气象, 2009, 28(6): 1291-1298.
img

QQ群聊

img

官方微信