Please wait a minute...
高级检索
高原气象  2019, Vol. 38 Issue (3): 539-551    DOI: 10.7522/j.issn.1000-0534.2019.00011
论文     
利用TRMM PR和IGRA探测分析的拉萨降水云内大气温湿廓线特征
王梦晓, 王瑞, 傅云飞
中国科学技术大学地球与空间科学学院, 安徽 合肥 230026
Analysis of Atmospheric Temperature and Humidity Profiles within Precipitation Cloud in Lhasa Measured by TRMM PR and IGRA
WANG Mengxiao, WANG Rrui, FU Yunfei
School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, Anhui, China
 全文: PDF(11975 KB)   HTML ( 0)
摘要: 利用热带测雨卫星测雨雷达(TRMM PR)降水回波反射率因子廓线(降水率廓线)与全球探空大气温湿廓线(IGRA)的多年融合资料,研究了青藏高原拉萨站夏季降水结构及相应的大气温湿结构特征。结果表明,该站降水回波反射率因子分布在17~45 dBz,大部分小于26 dBz;回波顶高度达17 km,呈现“瘦高”外形;相应的大气低层湿润,降水云内大气并非饱和,但温度露点差比全部状态时的值小。深厚降水系统的回波外形也呈现“瘦高”,按照降水率随高度的非线性变化,其垂直结构可分为三层,而浅薄降水系统的垂直结构呈现一层,即平均降水率斜率随高度呈对数线性变化,最大平均降水率(0.7 mm·h-1)出现在地面。深厚降水与浅薄降水云体内400 hPa高度(7.5 km)上下的露点温度递减的速率不同。降水云体内的零度层高度大约6.3 km,但PR没有探测到零度层亮带。统计结果还表明拉萨探空站及附近的大气可降水量为20.89 mm·d-1,降水转化率为27.0%,深厚降水系统的降水转化率是浅薄降水系统的2.9倍,深厚降水系统和浅薄降水系统的CAPE值分别为1941.7 J·kg-1和1451.8 J·kg-1。本研究结果为模式模拟青藏高原降水云内的温湿结构提供了观测依据。
关键词: 热带测雨卫星测雨雷达降水廓线温湿廓线深厚降水浅薄降水    
Abstract: The atmospheric temperature and humidity profiles of precipitation cloud reflects the structure characteristics of precipitation cloud. In order to reveal the profiles inside the precipitation clouds of Lhasa in Qinghai-Tibet Plateau, the multi-year merging data of the precipitation profiles derived from the Tropical Rainfall Measuring Mission (TRMM)Precipitation Radar (PR)and the temperature and humidity profiles issued by the Integrated Global Radiosonde Archive (IGRA) are analyzed. The results show that the precipitation echo reflectivity factor is distributed between 17 and 45 dBz, most of which is less than 26 dBz. The echo height of the storm top reaches 17 km, presenting a ‘thin and tall’ appearance, corresponding to wetness but unsaturation in the lower atmosphere. However, the difference between the temperature and dew-point temperature within such precipitating clouds is smaller than its climatic value. The echo shape of deep precipitation system also presents "thin and tall" appearance. According to the nonlinear variation of rain rate with height within deep precipitating system, its vertical structure can be divided into three layers. While the vertical structure of shallow precipitating system presents one layer, that is, the slope of rain rate varies logarithmically linearly with height, and the maximum average rain rate (0.7 mm·h-1) appears on the ground. The lapse of dew-point temperature is different in deep precipitation system and shallow precipitation system above and below the height of 400 hPa (7.5 km). The altitude of the melting layer in the precipitation system is about 6.3 km, but no brightness band is detected by PR. The statistical results also show that the atmospheric precipitable precipitation is 20.89 mm·d-1 in Lhasa sounding station and its vicinity, the conversion rate of precipitation system is about 27.0%. Probably, the conversion rate of deep precipitation system is 2.9 times higher than that of shallow precipitation system. Besides, The CAPE of the deep precipitation system and the shallow precipitation system are 1941.7 J·kg-1 and 1451.8 J·kg-1, respectively.
Key words: TRMM PR    precipitation profile    temperature and humidity profiles    deep precipitation    shallow precipitation
收稿日期: 2018-10-14 出版日期: 2019-06-11
:  P407.2  
基金资助: 国家自然科学基金项目(91837310);公益性行业(气象)科研专项(GYHY201406001)
通讯作者: 傅云飞(1961-),男,安徽安庆人,教授,主要从事云降水卫星遥感与天气及气候方面的研究.E-mail:fyf@ustc.edu.cn     E-mail: fyf@ustc.edu.cn
作者简介: 王梦晓(1995-),女,山东青岛人,硕士研究生,主要从事大气物理学及探测遥感方面的研究E-mail:wangmx@mail.ustc.edu.cn
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王梦晓
王瑞
傅云飞

引用本文:

王梦晓, 王瑞, 傅云飞. 利用TRMM PR和IGRA探测分析的拉萨降水云内大气温湿廓线特征[J]. 高原气象, 2019, 38(3): 539-551.

WANG Mengxiao, WANG Rrui, FU Yunfei. Analysis of Atmospheric Temperature and Humidity Profiles within Precipitation Cloud in Lhasa Measured by TRMM PR and IGRA. Plateau Meteorology, 2019, 38(3): 539-551.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2019.00011        http://www.gyqx.ac.cn/CN/Y2019/V38/I3/539

Biondi R, Randel W, Ho S P, 2012.Thermal structure of intense convective clouds derived from GPS radio occultations[J].Atmospheric Chemistry and Physics, 12(12):5309-5318.
Durre I, Vose R S, Wuertz D B, 2006.Overview of the integrated global radiosonde archive[J].Journal of Climate, 19(1):53-68.
Feng S, Fu Y F, Xiao Q N, 2011.Is the tropopause higher over the Tibetan Plateau? Observational evidence from Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) data[J].Journal of Geophysical Research, 116:D21121.DOI:10.1029/2011JD016140.
Feng S, Fu Y, Xiao Q, 2012.Trends in the global tropopause thickness revealed by radiosondes[J].Geophysical Research Letters, 39:L20706.DOI:10.1029/2012GL053460.
Fujinami H, Nomura S, Yasunari T, 2005.Characteristics of diurnal variations in convection and precipitation over the southern Tibetan Plateau during summer[J].SOLA, 1:049-052.
Fu Y F, Liu G S, Wu G X, et al, 2006.Tower mast of precipitation over the central Tibean Plateau summer[J].Geophysical Research Letters, 33(5):L05802.
Fu Y F, Liu G S, 2007.Possible misidentification of rain type by TRMM PR over Tibetan Plateau[J].Journal of Applied Meteorology and Climatology, 46(5):667-672.
Highwood E J, HoskinsB J, 1998.The tropical tropopause[J].Quarterly Journal of the Royal Meteorological Society, 124(549):1579-1604.DOI:10.1002/qj.49712454911.
Haynes J M, Stephens G L, 2007.Tropical oceanic cloudiness and the incidence of precipitation:Early results from CloudSat[J].Geophysical Research Letters, 34(9):L09811.DOI:10.1029/2007GL029335.
Iguchi T, Kozu T, Meneghini R, 2000.Rain-profiling algorithm for the TRMM precipitation radar[J].Journal of Applied Meteorology, 39(12):2038-2052.
Kummerow C, Barnes W, Kozu T, 1998.The Tropical Rainfall Measuring Mission (TRMM) sensor package[J].Journal of Atmospheric and Oceanic Technology, 15(3):809-817.
Kozu T, Kawanishi T, Kuroiwa H, 2001.Development of precipitation radar onboard the Tropical Rainfall Measuring Mission (TRMM) satellite[J].IEEE Transactions on Geoscience and Remote Sensing, 39(1):102-116.
Ma R Y, LuoY L, WangH, 2018.Classification and diurnal variations of precipitation echoes observed by a C-band vertically-pointing radar in central Tibetan Plateau during TIPEX-Ⅲ 2014-IOP[J].Journal of Meteorological Research, 32(6):985-1001.DOI:10.1007/s13351-018-8084-8.
Mitrescu C, Miller S, Hawkins J, 2008.Near-real-time applications of CloudSat data[J].Journal of Applied Meteorology and Climatology, 47 (7):1982-1994.
Posselt D J, Stephens G L, Miller M, 2008.CloudSat:Adding a new dimension to a classical view of extratropical cyclones[J].Bulletin of the American Meteorological Society, 89(5):599-609.
Qin F, Fu Y F, 2016.TRMM-observed summer warm rain over the tropical and subtropical Paciflc Ocean:Characteristics and regional difierences[J].Journal of Meteorological Research, 30(3):371-385.DOI:10.1007/s13351-016-5151-x.
Trenberth K E, Dai A, 2003.The changing character of precipitation[J].Bulletin of the American Meteorological Society, 84(9):1205-1217.
Takahashi N, Iguchi T, 2004.Estimation and correction of beam mismatch of the precipitation radarafter an orbit boost of the Tropical Rainfall Measuring Mission Satellite[J].IEEE Transactionson Geoscience and Remote Sensing, 42(11):2362-2369.
Wang R, Fu Y F, 2017.Structural characteristics of atmospheric temperature and humidity inside clouds of convective and stratiform precipitation in the rainy season over East Asia[J].Journal of Meteorological Research, 31:890-905.
Xian T, Fu Y F, 2015.Characteristics of tropopause-penetrating convection determined by TRMM and COSMIC GPS radio occultation measurements[J].Journal of Geophysical Research:Atmospheres, 120(14):7006-7024.DOI:10.1002/2014JD022633.
Yuter S E, Houze Jr R A, 1994.Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus.Part Ⅱ:Frequency distributions of vertical velocity, reflectivity, and differential reflectivity[J].Monthly Weather Review, 123(7):1941-1963.
Zipser E J, Lutz K R, 1994.The vertical profile of radar reflectivity of convective cells:A strong indicator of storm intensity and lightning probability[J].Monthly Weather Review, 122(8):1751-1759.
曹瑜, 游庆龙, 马茜蓉, 等, 2017.青藏高原夏季极端降水概率分布特征[J].高原气象, 36(5):1176-1187.DOI:10.7522/j.issn.1000-0534.2016.00131.
傅云飞, 宇如聪, 徐幼平, 2003.TRMM 测雨雷达和微波成像仪对两个中尺度特大暴雨降水结构的观测分析研究[J].气象学报, 61(4):421-431.
傅云飞, 李宏图, 自勇, 2007.TRMM卫星探测青藏高原谷地的降水云结构个例分析[J].高原气象, 26(1):98-106.
傅云飞, 刘奇, 自勇, 2008.基于TRMM卫星探测的夏季青藏高原降水和潜热分析[J].高原山地气象研究, 28(1):8-18.DOI:10.3969/j.issn.1674-2184.2008.01.002.
傅云飞, 潘晓, 刘国胜, 2016.基于云亮温和降水回波顶高度分类的夏季青藏高原降水研究[J].大气科学, 40(1):102-120.DOI:10.3878/j.issn.1006-9895.1507.15165.
韩熠哲, 马伟强, 王炳赟, 等, 2017.青藏高原近30年降水变化特征分析[J].高原气象, 36(6):1477-1486.DOI:10.7522/j.issn.1000-0534.2016.00125.
李霞, 张广兴, 2003.天山可降水量和降水转化率的研究[J].中国沙漠, 23(5):509-513.
林志强, 德庆, 文胜军, 等, 2014.西藏高原汛期大到暴雨的时空分布和环流特征[J].暴雨灾害, 33(1):73-79.
刘奇, 傅云飞, 刘国胜, 2007.夏季青藏高原与东亚及热带的降水的廓线差异分析[J].中国科学技术大学学报, 37(8):885-894.
栾澜, 孟宪红, 吕世华, 等, 2018.青藏高原土壤湿度触发午后对流降水模拟试验研究[J].高原气象, 37(4):873-885.DOI:10.7522/j.issn.1000-0534.2018.00008.
彭治班, 刘建文, 郭虎, 2001.国外强对流天气的应用研究[M].北京:气象出版社, 89-95.
潘晓, 傅云飞, 2015.夏季青藏高原深厚及浅薄降水云气候特征分析[J].高原气象, 34(5):1182-1189.DOI:10.7522/j.issn.1000-0534.2014.00112.
夏静雯, 傅云飞, 2016.东亚与南亚雨季对流和层云降水云内的温湿结构特征分析[J].大气科学, 40(3):563-580.DOI:10.3878/j.issn.1006-9895.1507.15123.
徐桂荣, 乐新安, 张文刚, 等, 2016.COSMIC掩星资料反演青藏高原大气廓线与探空观测的对比分析[J].暴雨灾害, 35(4):315-325.
周顺武, 吴萍, 王传辉, 2011.青藏高原夏季上空水汽含量演变特征及其与降水的关系[J].地理学报, 66(11):1466-1478.
卓嘎, 边巴次仁, 杨秀海, 罗布, 2013.近30年西藏地区大气可降水量的时空变化特征[J].高原气象, 32(1):23-30.DOI:10.7522/j.issn.1000-0534.2012.00003.
朱乾根, 林锦瑞, 寿绍文, 等, 2007.天气学原理与方法(第4版)[M].北京:气象出版社.
[1] 程海艳, 余晔, 陈晋北, 姚惇, 解晋, 李江林. 大气红外探测器(AIRS)温、湿廓线反演产品及边界层高度在黄土高原的验证[J]. 高原气象, 2018, 37(2): 432-442.
img

QQ群聊

img

官方微信