Please wait a minute...
高级检索
高原气象  2019, Vol. 38 Issue (3): 593-603    DOI: 10.7522/j.issn.1000-0534.2019.00013
论文     
大气冰核谱对雷暴云微物理过程及起电影响的数值模拟
王梦旖, 谭涌波, 师正, 刘俊, 于梦颖, 郑天雪
南京信息工程大学气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室/气象灾害预报预警与评估协同创新中心/中国气象局气溶胶与云降水重点开放实验室, 江苏 南京 210044
Numerical Simulation of the Impact of Ice Nucleus Spectra on Microphysical Process and Electrification in Thunderstorms
WANG Mengyi, TAN Yongbo, SHI Zheng, LIU Jun, YU Mengying, ZHENG Tianxue
Key Laboratory of Meteorological Disaster, Ministry of Education(KLME)/Joint International Research Laboratory of Climate and Environment Change(ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters(CIC-FEMD)/Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China
 全文: PDF(9935 KB)   HTML ( 1)
摘要: 利用已有的二维对流云模式,讨论了三种不同的冰核谱对雷暴云微物理、起电及电荷结构的影响。模拟结果表明:(1)不同的冰核谱环境对雷暴云中冰相粒子的含量及分布具有明显作用。冰核谱的垂直温区越大,产生的冰相粒子分布越广。在冰核浓度较大的个例中,冰晶和霰粒子的含量高,更多的小冰相粒子出现在海拔更高的区域;(2)高温区冰核的数量会对上升气流速度产生显著影响。高温区的冰核越多,冰相粒子在微物理发展过程中释放的潜热越多,上升气流强,对流发展越旺盛;(3)在低温区冰晶浓度高的谱环境个例中,雷暴云中的非感应起电率和感应起电率高,导致起电量增加。高温区冰核多的谱环境,大量冰晶和霰获得正电荷形成次正电荷区,电荷结构呈现三极性;而高温区冰核少的谱环境,参与起电的水成物粒子少,易形成偶极性电荷结构。
关键词: 冰晶冰核谱电荷结构数值模拟    
Abstract: In this paper, we discuss the effect of three different ice nucleus spectral environments on the microphysical, electrification, and charge structure of thunderstorm clouds, using the existing two-dimensional(2-D) cumulus model. Simulation results show that:(1) Different ice nucleus spectral environments have a great influence on the content and distribution of ice-phase particlesin thunderstorm clouds. The larger the vertical temperature zone of the ice nucleusspectral, the wider the distribution of the ice phase particles produced. In the case of a large concentration of ice nucleus, the content of ice crystals and graupel particles is high, more small ice crystals appear in the zone of higher elevations; (2) The number of ice nucleus in high-temperature region has a significant affects the updrafts velocity. More ice nucleus in the high-temperature region leads to more latent heat released by the ice phase particles during the development of the microphysical process, resulting in intensive updrafts and vigorous convection development; (3) In the case of ice nucleusspectral environment with high ice crystal concentration in the low-temperature region, The non-inductive electric rate and inductive electric rate are high in thunderstorm clouds, resulting in increased charge. In the spectral environment with high ice nucleus in high temperature regions, a large number of ice crystals and graupel gain positive charge to form a sub-positive charge zone, and the charge structure exhibits tripolarity; while in a high-temperature zone, the spectrum environment with less ice nuclei and less hydrometeors particles participate in electrification, Dipolar charge structures are easily formed.
Key words: Ice crystals    ice nucleus spectrum    charge structure    numerical simulation
收稿日期: 2018-08-09 出版日期: 2019-06-11
:  P427.3  
基金资助: 国家自然科学基金项目(41805002);江苏省自然科学基金项目(BK20180808);江苏省高等学校自然科学研究项目(18KJB170010);南京信息工程大学人才启动基金项目(2016r042)
通讯作者: 谭涌波(1977-),男,重庆人,教授,主要从事雷电物理、大气电学等方面研究.E-mail:ybtan@ustc.edu     E-mail: ybtan@ustc.edu
作者简介: 王梦旖(1993-),女,河南南阳人,硕士研究生,主要从事雷电物理研究.E-mail:1499619436@qq.com
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王梦旖
谭涌波
师正
刘俊
于梦颖
郑天雪

引用本文:

王梦旖, 谭涌波, 师正, 刘俊, 于梦颖, 郑天雪. 大气冰核谱对雷暴云微物理过程及起电影响的数值模拟[J]. 高原气象, 2019, 38(3): 593-603.

WANG Mengyi, TAN Yongbo, SHI Zheng, LIU Jun, YU Mengying, ZHENG Tianxue. Numerical Simulation of the Impact of Ice Nucleus Spectra on Microphysical Process and Electrification in Thunderstorms. Plateau Meteorology, 2019, 38(3): 593-603.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2019.00013        http://www.gyqx.ac.cn/CN/Y2019/V38/I3/593

Barahona D, Nenes A, 2009.Parameterizing the competition between homogeneous and heterogeneous freezing in ice cloud formation-polydisperse ice nuclei[J].Atmospheric Chemistry and Physics, 9(16):5933-5948.
Bowen E G, 1956.January freezing nucleus measurement[J].Australian Journal of Physics, 9:552-555.
Cooper W A, 1980.A method of detecting contact ice nuclei using filter samples[C]//Preprints Cloud Phys.Conf., Clermont-Ferrand, France.605-669.
Deierling W, Petersen W A, Latham J, et al, 2008.The relationship between lightning activity and ice fluxes in thunderstorms[J].Journal of Geophysical Research, 113:D15210.
Ekman A, Engström A, Wang C, 2007.The effect of aerosol composition and concentration on the development and anvil properties of a continental deep convective cloud[J].Quarterly Journal of the Royal Meteorological Society, 133B(627):143-1452.
Fan J, Zhang R, Li G, et al, 2007.Effects of aerosols and relative humidity on cumulus clouds[J].Journal of Geophysical Research, 112:D14204.
Fletcher N H, 1962.Physics of rain clouds[M].Cambridge:Cambridge University Press, 386.
Gardiner B, Lamb D, Pitter R L, et al, 1985.Measurements of initial potential gradient and particle charges in a montana summer thunderstorm[J].Journal of Geophysical Research, 90:6079-6086.
Gong W, Min Q, Li R, et al, 2010.Detailed cloud resolving model simulations of the impacts of Saharan air layerdust on tropical deep convection-Part 1:Dust acts as ice nuclei[J].Atmospheric Chemistry and Physics Discuss, 10(5):12907-12952.
Harrington J Y, Olsson P Q, 2001.On the potential influence of ice nuclei on surface-forced marine stratocumulus cloud dynamics[J].Journal of Geophysical Research:Atmospheres, 106(D21):27473-27484.
Hundson J G, 1993.Cloud condensation nuclei[J].Journal of Applied Meteorology, 32(3):596-607.
Isono K, Komabayasi M, Ono A, 1959.The nature and the origin of ice nuclei in the atmosphere[J].Journal of the Meteorological Society of Japan, 37:211-233.
Isono K, Tanaka T, 1966.Sudden increase of ice nucleus concentration associated with thunderstorm[J].Journal of the Meteorological Society of Japan, 44(5):255-259.
Jayaratne E R, Saunders C P R, Hallett J, 1983.Laboratory studies of the charging of soft-hail during ice crystal interactions[J].Quarterly Journal of the Royal Meteorological Society, 109:609-630.
Jin Y, Doyle J D, Zhao Q, et al, 2010.The impact of ice nuclei concentration on hurricane modeling[Z].NRL Review:Featured Research, 2010:123-129.
Kar S K, Liou Y A, Ha K J, 2009.Aerosol effects on the enhancement of cloud-to-ground lightning over major urban areas of South Korea[J].Atmospheric Research, 92(1):80-87.
Khain A P, BenMoshe N, Pokrovsky A, 2008.Factors determining the impact of aerosols on surface precipitation from clouds:An attempt at classification[J].Journal of the Atmospheric Sciences, 65(6):1721-1748.
Latham J, Petersen W A, Deierling W, et al, 2007.Field identification of a unique globally dominant mechanism of thunderstorm electrification[J].Quarterly Journal of the Royal Meteorological Society, 133(627):1453-1457.
Liu X H, Penner J E, 2002.Effect of Mount Pinatubo H2SO4/H2O aerosol on ice nucleation in the upper troposphere using a global chemistry and transport model[J].Journal of Geophysica Research, 107(D12):AAC 2-1-AAC 2-18.
Mansell E R, Macgorman D R, Ziegler C L, et al, 2005.Charge structure and lightning sensitivity in a simulated multicell thunderstorm[J].Journal of Geophysical Research, 110:D12101.
Mansell E R, Ziegler C L, 2013.Aerosol effects on simulated storm electrification and precipitation in a two-moment bulk microphysics model[J].Journal of the Atmospheric Sciences, 70:2032-2050.
Mitzeva R, Latham J, Petrova S, 2006.A comparative modeling study of the early electrical development of maritime and continental thunderstorms[J].Atmospheric Research, 82(1/2):26-36.
Murray N D, Orville R E, Huffines G R, 2000.Effect of pollution from Central American fires on cloud-to-ground lightning in May 1998[J].Geophysical research letters, 27:2249-2252.
Orville R E, Huffines G, Nielsen-Gammon J, et al, 2001.Enhancement of cloud-to-ground lightning over Houston[J].Geophysical Research Letters, 28(13):2597-2600.
Pereyra R G, Avila E E, Castellano N E, et al, 2000.A laboratory study of graupel charging[J].Journal of Geophysical Research, 105:20803-20812.
Saunders C P R, Keith W D, Mitzeva R P, 1991.The effect of liquid water on thunderstorm charging[J].Journal of Geophysical Research, 96:11007-11017.
SaundersC P R, Brooks I M, 1992.The effects of high liquid water content on thunderstorm charging[J].Journal of Geophysical Research, 97(D13):14671-14676.
Shi Z, Tang H Q, Tan Y B, 2016.Effects of the inductive charging on the electrification and lightning discharges in thunderstorms[J], Terrestrial, Atmospheric and Oceanic Sciences, 27(2):241-251
Shi Z, Tan Y B, Tang H Q, et al, 2015.Aerosol effect on the land-ocean contrast in thunderstorm electrification and lightning frequency[J].Atmospheric Research, 164:131-141.
Sun A P, Chun H Y, Baik J J, et al, 2002.Influence of electrification on microphysical and dynamical processes in a numerically simulated thunderstorm[J].Journal of Applied Meteorology, 41:1112-1127.
Steiger S M, Orville R E, 2003.Cloud-to-ground lightning enhancement over Southern Louisiana[J].Geophysical Research Letters, 30(19):379-394.
Takahashi T, 1978.Riming electrification as a charge generation mechanism in thunderstorms[J].Journal of the Atmospheric Sciences, 35:1536-1548.
Tan YB, Tao S C, 2006.Numerical simulations of the bi-level and branched structure of intracloud lightning flashes[J].Science in China, 49(6):661-672.
Tan Y B, Tao S, Liang Z, et al, 2014.Numerical Study on Relationship between Lightning Types and Distribution of Space Charge and Electric Potential[J].Journal of Geophysica Research, 119(2):1003-1014.
Teller A, Levin Z, 2006.The effects of aerosols on precipitation and dimensions of subtropical clouds:asensitivity study using a numerical cloud model[J].Atmospheric Chemistry and Physics, 6:67-80.
Thompson G P, Field R, Rasmussen R M, et al, 2008.Explicit forecasts of winter precipitation using an improved bulk microphysics scheme.Part Ⅱ:Implementation of a new snow parameterization[J].Monthly Weather Review, 136(12):5095-5115.
Wang Y, Wan Q, Meng W, et al, 2011.Long-term impacts of aerosols on precipitation and lightning over the Pearl River Delta megacity area in China[J].Atmospheric Chemistry and Physics, 11(23):12421-12436.
Westcott N E, 1995.Summertime cloud-to-ground lightning activity around major mid-western urban areas[J].Journal ofApplied Meteorology, 34:1633-1642.
Williams E, Zhang R, Rydock J, 1991.Mixed phase microphysics and cloud electrification[J].Journal of the Atmospheric Sciences, 48:2195-2203.
Williams E, Stanfill S, 2002.The physical origin of the land-ocean contrast in lightning activity[J].Comptes Rendus Physique, 3(10):1277-1292.
Zhao P G, Yin Y, Xiao H, 2015.The effects of aerosol on development of thunderstorm electrification:A numerical study[J].Atmospheric Research, 153:376-391.
Ziegler C L, Macgorman D R, Dye J E, et al, 1991.A model evaluation of non-inductive graupel-ice charging in the early electrification of a mountain thunderstorm[J].Journal of Geophysical Research, 96(961):12833-12855.
陈丽, 银燕, 2009.沙尘气溶胶对大气冰相过程发展的敏感性试验[J].气象科学, 29(02):2208-2213.
葛正谟, 周春科, 1986.兰州市大气冰核的观测[J].高原气象, 5(2):167-171.
洪延超, 1998.三维冰雹云催化数值模式[J].气象学报, 56(6):641-653.
胡志晋, 何观芳, 1987.积雨云微物理过程的数值模拟(一)微物理模式[J].气象学报, 45(4):467-484.
孔凡铀, 黄美元, 徐华英, 1991.冰相过程在积云发展中的作用的三维数值模拟研究[J].中国科学(B辑), 35(7):1000-1008.
李丽光, 周德平, 2011.大气冰核研究进展[J].高原气象, 30(6):1716-1721.
马明, 2004.雷电与气候变化相互关系的一些研究[D].合肥:中国科学技术大学.
牛生杰, 安夏兰, 陈跃, 等, 2000.贺兰山地区大气冰核浓度的测量及初步分析[J].南京气象学院学报, 23(2):294-298.
彭艳, 王钊, 董妍, 等, 2016.1960-2012年陕西降水变化特征及可能成因分析[J].高原气象, 35(4):1050-1059.DOI:10.7522/j.issn.1000-0534.2015.00023.
石爱丽, 郑国光, 游来光, 等, 2006.2003年秋季青海省河南县地面大气冰核观测分析[J].应用气象学报, 17(2):245-249.
宿兴涛, 许丽人, 魏强, 等, 2016.东亚地区沙尘气溶胶对降水的影响研究[J].高原气象, 35(1):211-219.DOI:10.7522/j.issn.1000-0534.2014.00091.
谭涌波, 陶善昌, 祝宝友, 等, 2006a.雷暴云内闪电双层、分支结构的数值模拟[J].中国科学(D 辑), 36(5):486-496.
谭涌波, 2006a.闪电放电与雷暴云电荷、电位分布相互关系的数值模拟[D].合肥:中国科技大学.
谭涌波, 陶善昌, 祝宝友, 等, 2006b.雷暴云内闪电双层、分支结构的数值模拟[J].中国科学(地球科学), 36(5):486-496.
谭涌波, 陶善昌, 祝宝友, 2007.云闪放电对云内电荷和电位分布影响的数值模拟[J].地球物理学报, 50(4):1053-1065.
谭涌波, 师正, 王宁宁, 等, 2012.随机性与电环境特征对地闪击地点影响的数值模拟[J].地球物理学报, 55(11):3534-3541.
谭涌波, 杨忆, 师正, 等, 2015.冰晶核化对雷暴云微物理过程和起电影响的数值模拟研究[J].大气科学, 39(2):289-302.
王谦, 胡志晋, 1990.三维弹性大气模式和实测强风暴的模拟[J].气象学报, 48(1):91-101.
肖辉, 杨慧玲, 洪延超, 等, 2012.大气冰核谱分布对对流风暴云人工催化影响的数值模拟研究[J].气候与环境研究, 17(6):833-847.
杨磊, 银燕, 杨绍忠, 等, 2013.南京地区大气冰核浓度的测量及分析[J].大气科学, 37(3):579-594.
杨玉华, 陈葆德, 王斌, 等, 2015.背景场云凝结核浓度对理想热带气旋强度的影响[J].高原气象, 34(5):1379-1390.DOI:10.7522/j.issn.1000-0534.2014.00095.
游来光, 石安英, 1964.北京地1963年春季冰核浓度变化特点的观测分析[J].气象学报, 53(1):548-554.
游来光, 杨绍忠, 王祥国, 等, 2002.1995和1996年春季北京地区大气冰核浓度的观测与研究[J].气象学报, 60(1):101-109.
于达维, 何观芳, 周勇, 等, 2001.三维对流云催化模式及其外场试用[J].应用气象学报, 12(增刊):122-132.
[1] 周荣卫, 何晓凤. 新疆哈密复杂地形风场的数值模拟及特征分析[J]. 高原气象, 2018, 37(5): 1413-1427.
[2] 章焕, 范广洲, 张永莉, 赖欣. 青藏高原土壤湿度对一例高原涡影响的数值模拟[J]. 高原气象, 2018, 37(4): 886-898.
[3] 栾澜, 孟宪红, 吕世华, 韩博, 李照国, 赵林, 李瑞青. 青藏高原土壤湿度触发午后对流降水模拟试验研究[J]. 高原气象, 2018, 37(4): 873-885.
[4] 郭凤霞, 王曼霏, 黄兆楚, 李扬, 穆奕君, 廉纯皓, 曾凡辉. 青藏高原雷暴电荷结构特征及成因的数值模拟研究[J]. 高原气象, 2018, 37(4): 911-922.
[5] 顾婷婷, 李晓丽, 刘丹妮, 潘娅英. 舟山跨海大桥一次强冷空气过程的精细化风场模拟[J]. 高原气象, 2018, 37(4): 1074-1082.
[6] 苏东生, 胡秀清, 文莉娟, 赵林, 李照国. 青海湖热力状况对气候变化响应的数值研究[J]. 高原气象, 2018, 37(2): 394-405.
[7] 罗雄, 李国平. 一次高原切变线过程的数值模拟与阶段性结构特征[J]. 高原气象, 2018, 37(2): 406-419.
[8] 李宏毅, 肖子牛, 朱玉祥. 藏东南草地下垫面地气通量交换日变化的数值模拟[J]. 高原气象, 2018, 37(2): 443-454.
[9] 石海峰, 郭凤霞, 王昊亮, 陆干沂, 刘祖培, 鲍敏, 李雅雯. 雷暴单体中降水退屏蔽作用和正地闪之间的关系[J]. 高原气象, 2017, 36(6): 1703-1712.
[10] 师宇, 楼小凤, 单云鹏, 胡非. 北京地区一次降雪过程的人工催化数值模拟研究[J]. 高原气象, 2017, 36(5): 1276-1289.
[11] 周旭, 张镭, 陈丽晶, 郭琪. 沙尘暴过程中沙尘气溶胶对气象场的影响[J]. 高原气象, 2017, 36(5): 1422-1432.
[12] 周旭, 张镭, 陈丽晶, 郭琪. 沙尘暴过程中沙尘气溶胶对气象场的影响[J]. 高原气象, 2017, 36(5): 1422-1432.
[13] 师宇, 楼小凤, 单云鹏, 胡非. 北京地区一次降雪过程的人工催化数值模拟研究[J]. 高原气象, 2017, 36(5): 1276-1289.
[14] 许威杰, 张耀存. 凝结潜热加热与对流反馈对一次高原低涡过程影响的数值模拟[J]. 高原气象, 2017, 36(3): 763-775.
[15] 贾东于, 文军, 马耀明, 刘蓉, 王欣, 周娟, 陈金雷. 植被对黄河源区水热交换影响的研究[J]. 高原气象, 2017, 36(2): 424-435.
img

QQ群聊

img

官方微信