复杂地形下局地山谷风环流的理想数值模拟

姜平;刘晓冉;朱浩楠;朱宇;曾文馨

PDF(12393 KB)
高原气象 ›› 2019, Vol. 38 ›› Issue (6) : 1272-1282. DOI: 10.7522/j.issn.1000-0534.2019.00019
论文

复杂地形下局地山谷风环流的理想数值模拟

  • 姜平;刘晓冉;朱浩楠;朱宇;曾文馨
作者信息 +

Idealized Numerical Simulation of Local Mountain-Valley Winds over Complex Topography

  • JIANG Ping;LIU Xiaoran;ZHU Haonan;ZHU Yu;ZENG Wenxin
Author information +
History +

摘要

利用计算流体力学手段,结合基于气象站观测事实并理想化的初始条件,对重庆复杂地形下局地山谷风环流进行高精度数值模拟,探讨因复杂地形而导致的热力差异对山谷风环流形成的影响。结果表明,仅仅由地形高低起伏导致的热力差异能够在局地形成山谷风环流。在白天,受太阳辐射作用,山坡升温幅度比山谷明显,在同一海拔处形成温度差异,形成谷风环流。理想的谷风在山脊两侧坡度较大的近地面最为明显,风速可达0.15 m·s-1,但在山坡和山谷地势较为平坦的区域则不显著。在凌晨,山谷的保温作用明显,且山坡辐射冷却较强,故产生由山坡吹向山谷的山风环流。模拟的山风特征与谷风基本一致,但强度稍小(0.1 m·s-1),方向相反。扩大山坡与山谷热力差异的敏感性试验表明,白天的谷风环流能明显增强,近地面全风速可达0.4 m·s-1,且对应的垂直速度以及边界层高度均有所增加;但晚上山风环流的增强则不明显。

Abstract

This study used observational data to carry out a high-resolution simulation on mountain-valley winds over complex topography with a computational fluid dynamics model. Results show that the thermal contrast by topography could form the mountain-valley winds. During daytime (T16), the temperature at mountain top increases faster than the foot by the solar radiation, which result in thermal contrast at a same level, and thus forms a clear valley-wind circulation. The near-surface wind is strong at both edges of mountain ridge, and the magnitude can reach 0.15 m·s-1. However, the winds at flat areas of mountain top and valley are not observable. In the evening (T04), the valley keeps warm and mountain top cools by radiation, which forms the mountain wind blowing from the valley. The simulated mountain winds are similar to valley wind, but with a smaller magnitude (~0.1 m·s-1) and an opposite direction. Two sensitive tests show that enlarging the amplitude of the thermal difference between mountain top and valley could enhance valley winds at daytime. The near-surface winds can be as large as 0.4 m·s-1, and the corresponding vertical winds and boundary layer height both increase obviously. However, the mountain-wind circulation do not show similar variations.

关键词

复杂地形 / 山谷风 / 热力差异 / 计算流体力学

Key words

Complex topography / mountain-valley wind / thermal contrast / computational fluid

引用本文

导出引用
姜平;刘晓冉;朱浩楠;朱宇;曾文馨. 复杂地形下局地山谷风环流的理想数值模拟. 高原气象. 2019, 38(6): 1272-1282 https://doi.org/10.7522/j.issn.1000-0534.2019.00019
姜平;刘晓冉;朱浩楠;朱宇;曾文馨. Idealized Numerical Simulation of Local Mountain-Valley Winds over Complex Topography. Plateau Meteorology. 2019, 38(6): 1272-1282 https://doi.org/10.7522/j.issn.1000-0534.2019.00019

参考文献

[1]Catalano F, Moeng C H, 2010. Large-eddy simulation of the daytime boundary layer in an idealized valley using the weather research and forecasting numerical model[J]. Boundary-Layer Meteorology, 137:49-75. DOI:10.1007/s10546-010-9518-8.
[2]Chen G, Zhu X, Sha W, et al, 2015a. Toward improved forecasts of sea-breeze horizontal convective rolls at super high resolutions[J]. Part Ⅰ:Configuration and verification of a down-scaling simulation system (DS3)[J]. Monthly Weather Review, 143:1849-1872. DOI:10.1175/MWR-D-14-00212.1.
[3]Chen G, Zhu X, Sha W, et al, 2015b. Toward improved forecasts of sea-breeze horizontal convective rolls at super high resolutions[J]. Part Ⅱ:The impacts of land use and buildings[J]. Monthly Weather Review, 143:1873-1894. DOI:10.1175/MWR-D-14-00230.1.
[4]Davidson B, Rao P K, 1963. Experimental studies of the valley-plain wind[J]. Air and Water Pollution, 7 (9/10):907-923.
[5]Jarvis A, Reuter H I, Nelson A, et al, 2008. Hole-filled SRTM for the globe Version 4[DB/OL]. Available from the CGIAR-CSI SRTM 90 m Database. <a href="http://srtm.csi.cgiar.org" target="_blank">http://srtm.csi.cgiar.org</a>.
[6]Jiang P, Wen Z, Sha W, et al, 2017. Interaction between turbulent flow and sea breeze front over urban-like coast in large-eddy simulation[J]. Journal of Geophysical Research-Atmospheres, 122. DOI:10.1002/2016JD026247.
[7]Leonard B P, 1979. A stable and accurate convection modeling procedure based on quadratic upstream interpolation[J]. Computer Methods in Applied Mechanics and Engineering, 19(1):59-98. DOI:10.1016/0045-7825(79)90034-3.
[8]Lilly D K, 1962. On the numerical simulation of buoyant convection[J]. Tellus, 14(2):148-172. DOI:10.1111/j.2153-3490.1962. tb00128. x.
[9]Patankar S V, 1980. Numerical heat transfer and fluid flow[M]. Taylor &amp; Francis Press, 214.
[10]Serafin S, Zardi D, 2010. Daytime heat transfer processes related to slope flows and turbulent convection in an idealized mountain valley[J]. Journal of the Atmospheric Sciences, 67(11):3739-3756. DOI:10.1175/2010JAS3428.1.
[11]Sha W, 2002. Design of the dynamics core for a new-generation numerical model of the local meteorology (in Japanese)[J]. Kaiyo Monthly, 2:107-112.
[12]Sha W, 2008. Local meteorological model based on LES over the Cartesian coordinate and complex surface (in Japanese)[M]. Meteorological Society of Japan Press, 21-26.
[13]Smagorinsky J, 1963. General circulation experiments with the primitive equations[J]. Monthly Weather Review, 91(3):99-164. DOI:10.1175/1520-0493(1963)091&lt;0099:GCEWTP&gt;2.3. CO; 2.
[14]Stull R B, 1988. An introduction to boundary layer meteorology[M]. Dordrecht:Kluwer Academic Publishers, 666.
[15]曹杨, 陈洪滨, 王普才, 2017.声雷达资料可靠性及近地面边界层风场特征分析[J].高原气象, 36(5):1315-1324. DOI:10.7522/j.issn.1000-0534.2016.00100.
[16]程炳岩, 李永华, 唐红玉, 等, 2012.重庆市气候业务技术手册[M].北京:气象出版社, 275.
[17]季国良, 张礼才, 邢连壁, 等, 1984.山谷风与山区污染物的扩散[J].环境研究, 2:10-15.
[18]李晓霞, 黄涛, 王兴, 等, 2017.兰州新区近地层风场时空特征分析[J].高原气象, 36(4):1001-1009. DOI:10.7522/j.issn.1000-0534.2016.00092.
[19]林之光, 李映江, 1985.天山天池山谷风的气候研究[J].地理研究, 4(1):63-70. DOI:10.11821/yj1985010007.
[20]欧阳琳, 阳坤, 秦军, 等, 2017.喜马拉雅山区降水研究进展与展望[J].高原气象, 36(5):1165-1175. DOI:10.7522/j.issn.1000-0534.2016.00111.
[21]蒲朝霞, 邱崇践, 1991.兰州地区山谷风环流的二维数值模拟[J].兰州大学学报(自然科学版), 27(2):169-175. DOI:10.3321/j.issn:0455-2059.1991.02.032.
[22]邱崇践, 蒲朝霞, 1991.山谷风环流控制下的大气污染物输送和扩散过程:二维数值模拟研究[J].高原气象, 10(4):362-370.
[23]寿绍文, 励申申, 姚秀萍, 2003.中尺度气象学[M].北京:气象出版社, 329.
[24]汤懋苍, 1963.祁连山区天气的日变化[J].地理学报, 30(3):197-206. DOI:10.11821/xb196303003.
[25]席世平, 寿绍文, 郑世林, 等, 2007.复杂地形下山谷风的数值模拟[J].气象与环境科学, 30(3):41-44. DOI:10.3969/j.issn.1673-7148.2007.03.009.
[26]许鲁君, 刘辉志, 曹杰, 2014.大理苍山-洱海局地环流的数值模拟[J].大气科学, 38(6):1198-1210. DOI:10.3878/j.issn.1006-9895.1401.13293.

基金

重庆市气象局青年基金项目(QNJJ-201907);重庆市气象局智慧气象技术创新团队项目(ZHCXTD-201808);重庆市悦来新城海绵城市建设科研项目(城科字2015第2-10号)
PDF(12393 KB)

1216

Accesses

0

Citation

Detail

段落导航
相关文章

/