Please wait a minute...
高级检索
高原气象  2019, Vol. 38 Issue (3): 497-506    DOI: 10.7522/j.issn.1000-0534.2019.00024
论文     
那曲高寒草地总体输送系数及地面热源特征
郑汇璇1,3, 胡泽勇1,2, 孙根厚4, 谢志鹏5, 严晓强6, 王奕丹1,3, 付春伟1,3
1. 中国科学院西北生态环境资源研究院/中国科学院寒旱区陆面过程与气候变化重点实验室, 甘肃 兰州 730000;
2. 中国科学院青藏高原地球科学卓越创新中心, 北京 100101;
3. 中国科学院大学, 北京 100049;
4. 中山大学大气科学学院, 广东 广州 510275;
5. 中国科学院青藏高原研究所, 北京 100101;
6. 成都市气象局, 四川 成都 610071
The Bulk Transfer Coefficient and Characteristics of Surface Heat Source on Alpine Grassland at Naqu
ZHENG Huixuan1,3, HU Zeyong1,2, SUN Genhou4, XIE Zhipeng5, YAN Xiaoqiang6, WANG Yidan1,3, FU Chunwei1,3
1. Key Laboratory for land process and climate change in cold and Arid Regions, Northwest Institute of Ecological and Environmental Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China;
2. Center for Excellence in Tibetan Plateau Earth Science, Chinese Academy of Science, Beijing 100101, China;
3. University of Chinese Academy of Sciences, Beijing 100049, China;
4. School of Atmospheric Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, China;
5. Institute of Tibetan Plateau, Chinese Academy of Sciences, Beijing 100101, China;
6. Chengdu Meteorological Administration, Chengdu 610071, Sichuan, China
 全文: PDF(1015 KB)   HTML ( 0)
摘要: 利用中国科学院那曲高寒气候环境观测研究站那曲/BJ观测点的野外观测数据,估算了青藏高原那曲地区典型高寒草地下垫面的热量和水汽总体输送系数以及地表大气相对湿度因子,在此基础上利用中国气象局那曲气象站1980-2016年的常规业务观测数据,采用总体输送法计算并分析了那曲高寒草地地表通量特征。研究结果表明:(1)那曲/BJ观测点地表大气相对湿度因子γ的数值在33%~62%,9月最大,2月最小,热量和水汽输送系数CHCλ的季节变化范围分别在1.6×10-3~2.7×10-3和1.0×10-3~2.0×10-3,两者存在较大的差异。(2)1980-2016年那曲高寒草地感热通量总体呈现减弱趋势,而潜热通量呈现增强趋势,导致地面热源变化趋势不明显;分阶段来看,感热通量的变化在2004年前后发生转折,转折点前后的趋势为先减弱后增加,潜热通量在1994-2005年下降趋势明显,这也导致地面热源在1995-2005年有一个明显的减少。(3)年内季节变化上潜热通量相较于感热通量更明显,地面热源的季节变化更依赖于潜热通量的季节变化。
关键词: 青藏高原地面热源相对湿度因子总体输送系数    
Abstract: Based on the data from the Naqu Station of Plateau Climate and Environment in the Northern Qinghai-Tibetan Plateau, this paper investigates the relative humidity close to the underlying surface and the bulk transfer coefficient over the underlying surface of typical alpine grassland in the Naqu area of the Qinghai-Tibetan Plateau. On this basis, using the conventional observation data from the Naqu Weather Station of the China Meteorological Administration from 1980 to 2016 to calculate and analyze the characteristics of surface fluxes over alpine grassland in Qinghai-Tibetan Plateau. The results suggest that:(1) The monthly average of the relative humidity close to the underlying surface at Naqu Station is between 33% and 62%, the highest is in September, and the lowest is in February, the monthly mean bulk transfer coefficient for heat CH at Naqu Station vary from 1.6×10-3 to 2.7×10-3, and the monthly mean bulk transfer coefficient for vapor Cλ at Naqu Station vary from 1.0×10-3 to 2.0×10-3. (2) The surface fluxes at Naqu area from 1980 to 2016 are calculated, the annually averaged sensible heat fluxes H showed a weakening trend, while the latent heat fluxes showed an increasing trend, which led to the inconspicuous trend of surface heat source. In stages, the mutation of sensible heat fluxes occurred in 2004, the trend before and after the turning point was firstly weakened and then increased, the latent heat fluxes decreased significantly from 1994 to 2005, which led to a significant reduction in surface heat source from 1995 to 2005. (3) The seasonal variation of latent heat fluxes at Naqu Station is more obvious than the change in sensible heat fluxes, the seasonal variation of the surface heat source is more dependent on the seasonal variation of latent heat fluxes.
Key words: Qinghai-Tibetan Plateau    surface heating    relative humidity close to the underlying surface    bulk transfer coefficient
收稿日期: 2018-11-23 出版日期: 2019-06-11
:  P404  
基金资助: 国家重点研发计划项目(2018YFC1505701);中国科学院战略性先导科技专项(XDA2006010101);国家自然科学基金项目(91837208,41805009,41575012,41661144043,91537101);中国科学院前沿科学重点研究项目(QYZDJ-SSW-DQC019)
通讯作者: 胡泽勇(1965-),男,山西五台人,研究员,主要从事陆面过程和气候变化方面的研究.E-mail:zyhu@lzb.ac.cn     E-mail: zyhu@lzb.ac.cn
作者简介: 郑汇璇(1995-),女,山东威海人,硕士研究生,主要从事陆面过程与气候变化研究.E-mail:zibber_x@163.com
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
郑汇璇
胡泽勇
孙根厚
谢志鹏
严晓强
王奕丹
付春伟

引用本文:

郑汇璇, 胡泽勇, 孙根厚, 谢志鹏, 严晓强, 王奕丹, 付春伟. 那曲高寒草地总体输送系数及地面热源特征[J]. 高原气象, 2019, 38(3): 497-506.

ZHENG Huixuan, HU Zeyong, SUN Genhou, XIE Zhipeng, YAN Xiaoqiang, WANG Yidan, FU Chunwei. The Bulk Transfer Coefficient and Characteristics of Surface Heat Source on Alpine Grassland at Naqu. Plateau Meteorology, 2019, 38(3): 497-506.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2019.00024        http://www.gyqx.ac.cn/CN/Y2019/V38/I3/497

Chen L, Reiter E R, Feng Z, 1985.The atmospheric heat source over the Tibetan Plateau:May-August 1979[J].Monthly Weather Review, 113:1771-1790.
Cressman G P, 1960.Improved terrain effects in barotropic forecasts[J].Monthly Weather Review, 88:327-342.
Duan A, Wu G, 2008.Weakening trend in the atmospheric heat source over the Tibetan Plateau during recent decades.Part I:Observations[J].Journal of Climate, 21(13):3149-3164.
Dyer A J, 1974.A review of flux-profile relationships[J].Boundary-Layer Meteorology, 7(3):363-372.
Kaimal J C, Finnigan J J, 1994.Atmospheric boundary layer flows:their structure and measurement[M].Oxford:Oxford university press.
Li G, Duan T, Gong Y, et al, 2001.Estimates of the bulk transfer coefficients and surface fluxes over the Tibetan Plateau using AWS data[J].Journal of the Meteorological Society of Japan, 79(2):625-635.
Moore C J, 1986.Frequency response corrections for eddy correlation system[J].Boundary-Layer Meteorology, 37:17-35.
Schotanus P, Nieuwstadt F T M, Debruin H A R, 1983.Temperature measurement with a sonic anemometer and its application to heat and moisture fluctuations[J].Boundary-Layer Meteorology, 26:81-93.
Stull R B, 1988.An introduction to boundary layer meteorology[M].Springer Science & Business Media.
Webb E K, Pearman G I, Leuning R, 1980.Correction of the flux measurements for density effects due to heat and water vapour transfer[J].Quarterly Journal of Royal Meteorological Society, 106:85-100.
Yaglom A M, 1977.Comments on wind and temperature flux-profile relationships[J].Boundary-Layer Meteorology, 11(1):89-102.
Yanai M, 1992.Seasonal Heating of the Tibetan Plateau and Its Effects on the Evolution of the Asian Summer Monsoon[J].Journal of the Meteorological Society of Japan, 79(1):419-434.
Yang K, Guo X F, Wu B Y, 2011.Recent trends in surface sensible heat flux on the Tibetan Plateau[J].Science in China Series (Earth Sciences), 54(1):19-28.
陈家宜, 范邵华, 赵传峰, 等, 2006.涡旋相关法测定湍流通量偏低的研究[J].大气科学, 30(3):423-432.
陈万隆, 翁笃鸣, 1984.关于青藏高原感热和潜热旬总量计算方法的初步研究[C]//青藏高原气象科学实验论文集(二).北京:科学出版社:35-45.
陈忠明, 闵文彬, 刘富明, 2003.青藏高原地表热源异常与四川盆地夏季降水的关联[J].气象, 29(5):9-12.
李栋梁, 陈丽萍, 1990.青藏高原地面加热场强度与东亚环流及西北初夏旱的关系[J].应用气象学报, 1(4):383-391.
李国平, 段廷扬, 巩远发, 2000.青藏高原西部地区的总体输送系数和地面通量[J].科学通报, 45(8):865-869.
李国平, 段廷扬, 吴贵芬, 2003.青藏高原西部的地面热源强度及地面热量平衡[J].地理科学, 23(1):13-18.
刘树华, 黄子琛, 刘立超, 等, 1995.空气动力学方法在湍流通量计算中的误差分析[J].气象, 21(3):3-6.
梁玲, 李跃清, 胡豪然, 等, 2013.青藏高原夏季感热异常与川渝地区降水关系的数值模拟[J].高原气象, 32(6):1538-1545.DOI:10.7522/j.issn.1000-0534.2013.00028.
孙根厚, 2016.藏北地区高寒草地地表通量的尺度扩展分析[D].兰州:中国科学院寒区旱区环境与工程研究所, 46-48.
盛裴轩, 2003.大气物理学[M].北京:北京大学出版社, 102-112.
王超, 韦志刚, 李振朝, 2010.敦煌戈壁气象塔站资料的质量控制[J].干旱气象, 28(2):121-127.
解晋, 余晔, 刘川, 等, 2018.青藏高原地表感热通量变化特征及其对气候变化的响应[J].高原气象, 37(1):28-42.DOI:10.7522/j.issn.1000-0534.2017.00019.
叶笃正, 高由禧, 1979.青藏高原气象学[M].北京:科学出版社, 89-101.
杨娟, 周广胜, 王云龙, 等, 2006.基于变分方法的内蒙古典型草原水热通量估算[J].应用生态学报, 17(11):2046-2051.
于威, 刘屹岷, 杨修群, 等, 2018.青藏高原不同海拔地表感热的年际和年代际变化特征及其成因分析[J].高原气象, 37(5):1161-1176.DOI:10.7522/j.issn.1000-0534.2018.00027.
严晓强, 胡泽勇, 孙根厚, 等, 2018.那曲高寒草地上四种地表通量计算方法的对比[J].高原气象, 37(2):358-370.DOI:10.7522/j.issn.1000-0534.2017.00067.
严晓强, 2018.藏北高寒草地下垫面地-气能量交换特征及气候因子分析[D].兰州:中国科学院西北生态环境资源研究院, 15-17.
周俊前, 刘新, 李伟平, 等, 2016.青藏高原春季地表感热异常对西北地区东部降水变化的影响[J].高原气象, 35(4):845-853.DOI:10.7522/j.issn.1000-0534.2015.00053.
周秀骥, 赵平, 陈军明, 等, 2009.青藏高原热力作用对北半球气候影响的研究[J].中国科学(地球科学), 39(11):1473-1486.
竺夏英, 刘屹岷, 吴国雄, 2012.夏季青藏高原多种地表感热通量资料的评估[J].中国科学(地球科学), 42(7):1104-1112.
张艳, 钱永甫, 2002.青藏高原地面热源对亚洲季风爆发的热力影响[J].南京气象学院学报, 25(3):298-306.
[1] 刘菊菊, 游庆龙, 王楠. 青藏高原夏季云水含量及其水汽输送年际异常分析[J]. 高原气象, 2019, 38(3): 449-459.
[2] 陈月, 李跃清, 范广洲, 陈宇航. 青藏高原大气蕴含潜热时空分布特征研究[J]. 高原气象, 2019, 38(3): 460-473.
[3] 王奕丹, 胡泽勇, 孙根厚, 谢志鹏, 严晓强, 郑汇璇, 付春伟. 高原季风特征及其与东亚夏季风关系的研究[J]. 高原气象, 2019, 38(3): 518-527.
[4] 常姝婷, 刘玉芝, 华珊, 贾瑞. 全球变暖背景下青藏高原夏季大气中水汽含量的变化特征[J]. 高原气象, 2019, 38(2): 227-236.
[5] 于涵, 张杰, 刘诗梦. 青藏高原地表非绝热加热模态及其与中国北方环流异常的联系[J]. 高原气象, 2019, 38(2): 237-252.
[6] 严晓强, 胡泽勇, 孙根厚, 谢志鹏, 王奕丹, 郑汇璇. 那曲高寒草地长时间地面热源特征及其气候影响因子分析[J]. 高原气象, 2019, 38(2): 253-263.
[7] 余小嘉, 杨胜朋, 蒋熹. COSMIC掩星资料在青藏高原地区的偏差特征[J]. 高原气象, 2019, 38(2): 288-298.
[8] 明绍慧, 秦正坤, 黄瑜. 卫星资料揭示的青藏高原对流层上层温度气候演变趋势特征[J]. 高原气象, 2019, 38(2): 264-277.
[9] 杜牧云, 王斌, 肖艳姣, 付志康, 周伶俐. X波段双线偏振雷达青藏高原观测资料质量分析[J]. 高原气象, 2019, 38(2): 278-287.
[10] 胡梦玲, 游庆龙. 青藏高原南侧经圈环流变化特征及其对降水影响分析[J]. 高原气象, 2019, 38(1): 14-28.
[11] 王玉琦, 鲍艳, 南素兰. 青藏高原未来气候变化的热动力成因分析[J]. 高原气象, 2019, 38(1): 29-41.
[12] 朱平, 俞小鼎. 青藏高原东北部一次罕见强对流天气的中小尺度系统特征分析[J]. 高原气象, 2019, 38(1): 1-13.
[13] 屠妮妮, 郁淑华, 高文良. 风场对高原涡在河套地区打转影响的初步分析[J]. 高原气象, 2019, 38(1): 66-77.
[14] 谷星月, 马耀明, 马伟强, 孙方林. 青藏高原地表辐射通量的气候特征分析[J]. 高原气象, 2018, 37(6): 1458-1469.
[15] 苏彦入, 吕世华, 范广洲. 青藏高原夏季大气边界层高度与地表能量输送变化特征分析[J]. 高原气象, 2018, 37(6): 1470-1485.
img

QQ群聊

img

官方微信