半干旱区植被减少与城市化对大气的局地和非局地影响的数值模拟

陈磊;田文寿;王婵

PDF(7410 KB)
高原气象 ›› 2009, Vol. 28 ›› Issue (2) : 233-245.
论文

半干旱区植被减少与城市化对大气的局地和非局地影响的数值模拟

  • 陈磊;田文寿;王婵
作者信息 +

Numerical Simulation of Local and Non-Local Effects of Vegetation Change and Urbanization in a Semi-Arid Region in China

  • CHEN Lei;TIAN Wen-shou;WANG Chan
Author information +
History +

摘要

利用中尺度模式对一半干旱地区植被和下垫面发生改变后大气产生的局地和非局地的响应进行了模拟分析。结果表明, 植被变化对区域内温度的影响比较复杂, 并有明显的日变化。相比与区域城市化形成的强而稳定的增温中心, 植被减少只会在区域形成较弱而间断的增温中心并敏感地依赖于地面净能量在感热、 潜热和土壤热通量之间的分配。区域内植被变化和下垫面特性的改变导致的局地温度变化在背景风场的作用下向区域外传播, 其传播的细节与风场的特征和地形密切相关。在适当的环流背景下, 迎风坡下垫面改变导致的温度变化可在背景风场的输送下, 绕过很高的山脊在背风坡形成一个持久的变温中心。植被减少导致的变温中心会在原有的环流形式上叠加一个强迫的二级环流。在中等风速条件下, 近地面约1K的区域变温所造成的二级环流深度可达到1.1 km。区域植被的减少, 一方面减少了地面向上的水汽输送, 导致了区域内气柱水汽含量的减少; 另一方面增温引起的强迫二级环流会使区域外水汽向内输送, 部分地补偿了地面向上输送水汽的减少, 但是二者总体的效果是区域内的气柱水汽总量减少。在实验区域之外, 上风向趋于增湿而下风向趋于减湿。

Abstract

Using a mesoscale model, the local and non\|local responses of the atmosphere to changes in vegetation cover and surface types in a semi\|arid region are analysed.The results show that the changes in vegetation cover have a complex effect on the surface temperature with a significant diurnal cycle. Contrast to a strong and persistent warming caused by urbanization of the area,decreasesin vegetation cover only give rise to a weak and intermitted warming depending on the partition of the surface net available energy between sensible heat flux, latent heat flux and soil heat flux.The local temperature anomalies caused by the vegetation and surface type change can propagate out of the source region by background winds with details of the propagation depending on wind fields and underlying topography. Under suitable wind conditions, those temperature signals can pass around a mountain to form a persistent warming region lee of the mountain. A decrease in vegetation cover tends to force a 1.1 km deep secondary circulation. Decreases in vegetation cover also lead to decreases in column total water vapour over the area for one hand, and force secondary circulations due to temperature contrast on the other. The forced secondary circulations tend to transport inward the water vapour outside of the area to compensate the decrease of water vapour input from the surface. The integrated effect of a decrease in vegetation cover is to decrease column total water vapour over the area. Outside of the area, the colume total water vapour tends to increase upwind of the area and decrease downwind of the area.

关键词

半干旱区 / 植被变化 / 城市化 / 二级环流 / 水汽输送 / 数值模拟

Key words

Semi-arid region / Vegetation change / Urbanization / Secondary circulatio / Water vapor transpor / Numerical simulation

引用本文

导出引用
陈磊;田文寿;王婵. 半干旱区植被减少与城市化对大气的局地和非局地影响的数值模拟. 高原气象. 2009, 28(2): 233-245
陈磊;田文寿;王婵. Numerical Simulation of Local and Non-Local Effects of Vegetation Change and Urbanization in a Semi-Arid Region in China. Plateau Meteorology. 2009, 28(2): 233-245

参考文献

[1]马柱国, 符淙斌. 1951-2004年中国北方干旱化的基本事实[J]. 科学通报, 2006, 51(20): 2429-2439
[2]符淙斌, 安芷生, 郭维栋. 我国生存环境演变和北方干旱化趋势预测研究(I): 主要研究成果[J]. 地球科学进展, 2005, 20(11): 1158-1167
[3]陈玉春, 吕世华, 高艳红. 不同尺度绿洲环流和边界层特征的数值模拟[J]. 高原气象, 2004, 23(2): 177-183
[4]安兴琴, 吕世华. 金塔绿洲大气边界层特征的数值模拟研究[J]. 高原气象, 2004, 23(2): 200-207
[5]吕世华, 罗斯琼. 敦煌绿洲夏季边界层特征的数值模拟[J]. 高原气象, 2004, 23(2): 147-154
[6]鲍艳, 左洪超, 吕世华, 等. 干旱区陆面过程参数改进对气候模拟的影响[J]. 高原气象, 2004, 23(2): 220-227
[7]奥银焕, 吕世华, 陈玉春. 河西地区不同下垫面边界层特征分析[J]. 高原气象, 2004, 23(2): 215-219
[8]薛具奎, 胡隐樵. 绿洲与沙漠相互作用的数值试验研究[J]. 自然科学进展, 2001, 11(5): 514-517
[9]安兴琴, 吕世华, 陈玉春. 河西绿洲效应的数值模拟研究[J]. 高原气象, 2004, 23(2): 208-214
[10]张强, 于学泉. 干旱区绿洲诱发的中尺度运动的模拟及其关键因子的敏感性试验[J]. 高原气象, 2001, 20(1): 58-65
[11]吕世华. 盆地绿洲边界层特征的数值模拟[J]. 高原气象, 2004, 23(2): 171-175
[12]刘远永, 文军, 韦志刚, 等. 黄土高原塬区地表辐射和热量平衡观测与分析[J]. 高原气象, 2007, 26(5): 928-937
[13]王慧, 胡泽勇, 谷良雷, 等. 黑河下游鼎新戈壁近地层能量输送及微气象特征[J]. 高原气象, 2007, 26(5): 938-945
[14]符淙斌, 温刚. 中国北方干旱化的几个问题[J]. 气候与环境研究, 2002, 7(1): 22-29
[15]乔标, 方创琳, 黄金川. 干旱区城市化与生态环境交互耦合的规律性及其验证[J]. 生态学报, 2006, 26(7): 2183-2190
[16]乔标, 方创琳, 李铭. 干旱区城市化与生态环境交互胁迫过程研究进展及展望[J]. 地理科学进展, 2005, 24(6): 31-41
[17]常学礼, 陈雅琳, 崔步礼. 半干旱地区城市化进程对区域沙漠化的影响[J]. 干旱区地理, 2007, 30(3): 321-327
[18]Peters-Lidard C D, M S Zion, E F Wood.A soil\|vegetation\|atmosphere transfer scheme for modeling spatially variable water and energy balance processes[J].J Geophys Res, 1997, 102: 4303-4324
[19]Mahrt L. Surface heterogeneity and vertical structure of the BoundaryLayer[J].Boundary\|Layer Meteor, 2000, 96: 33-62
[20]Shao Y, M Sogalla, M Kerschgens, et al. Effects of land\|surface heterogeneity upon surface fluxs and turbulent conditions[J]. Meteor Atmos Phys, 2001, 78: 157-181
[21]Albertson John D, William P Kustas, Todd M Scanlon.Large\|eddy simulation over heterogeneous terrain with remotely sensed land surface conditions[J]. Water Resour Res, 2001, 37: 1939-1953
[22]Yang Z L, Dai Y, R E Dickinson, et al. Sensitivity of ground heat flux to vegation cover fraction and leaf area index[J]. J Geophys Res, 1999, 104: 19505-19504
[23]Stull R B. An Introduction to Boundary Layer Meteorology[M]. Kluwer Academic Publishers, Dordrecht, 1988: 666
[24]Raasch S, G Harbusch. An analysis of secondary circulations and their effects caused by small\|scale surface inhomogeneities usinglarge\|eddy simulation[J].Boundary\|Layer Meteor, 2001, 101: 31-59
[25]Brown A R, A C M Beljaars,H Hersbach.Errors in parametrizations of convective boundary\|layer turbulent momentum mixing[J].Quart J Roy Meteor Soc, 2006, 132:1859 1876
[26]Kim Hyoung-Jin, YignNoh.Interaction between wind and temperature fields in the planetary boundarylayer for a spatially heterogeneous surface heat flux[J]. Boundary\|Layer Meteor, 2004, 111: 225-246
[27]AvissarRoni, TatyanaSchmidt. An evaluation of the scale at which ground\|Surface heat flux patchiness affects the convective boundary layer using large\|eddy simulations[J]. J Atmos Sci, 1997, 55: 2666-2689
[28]Gopalakrishnan S G, SomnathBaidyaRoy, RoniAvissar. An evaluation of the scale at which topographical features affect the convective boundary layer using large eddy simulations[J]. J Atmos Sci, 1999, 57: 334-351
[29]GopalakrishnanS G, RoniAvissar. An LES Study of the impacts of land surface heterogeneity on dispersion in the convective boundary layer[J]. J Atmos Sci, 1999, 57: 352-371
[30]Tchamen G W, R A Kahawita. Modelling wetting and drying effects overcomplex topography[J]. Hydrol Process, 1998, 12: 1151-1182
PDF(7410 KB)

610

Accesses

0

Citation

Detail

段落导航
相关文章

/