基于北京2005年5月31日雹云个例数值模拟结果, 分析了对流有效位能(CAPE)和水平风垂直切变(下称shear)等环境因素演变对对流活动的影响, 并进一步分析了强对流云与局地环境之间的相互作用。长生命史的超级单体风暴需要shear和CAPE之间相互配合, 一般用理查逊数(Ri=CAPE/shear)表示。本文给出了个例中这种配合的具体表现: 当对流有效位能达到1000 J·kg-1时, 小的垂直风切变产生一般单体对流, 对应Ri数>10, 较强切变产生超级单体强对流, 对应Ri数在1~5之间。环境影响对流形态, 同时对流对局地环境也有明显影响: 一般单体对流组成的飑线使其移动方向的局地环境shear增大, 超级单体强对流随着其发展对环境shear的消耗明显, 使得其周边几十甚至上百公里的环境shear明显减小。强对流活动区域局地环境shear的减小和CAPE的降低相配合, 使Ri数维持在1~5之间, 有利于超级单体流型的维持。
Abstract
On the base of successfully simulated hailstorm case which happened on 31 May 2005, the dependence of convective storm on the environmental factors including CAPE(the convective available potential energy) and shear(vertical wind shear) and the interaction between convective storm and local environment were studed. The result shows that the shear is very importantto convective storm type for a given amount of CAPE. The long-lived supercell storm need balance between CAPE and shear. The relationship between CAPE and shear has been expressed in term of Richardson number (Ri= CAPE/shear). In the simulated “531”case, when CAPE is more than 1000 J·kg-1 small shear bring short-lived ordinary convective cell while large shear often produce long-lived supercell storm and Richardson number is more than 10 in the former and between 1~5 in the latter. The convective storm effect local surrounding distinctly. The squall-line of ordinary cell tend to increase surrounding shear in front of it while supercell storm would dissipate more and more shear on the process of development and the area influenced spread to hundreds of kilometers. The blocking of the large-scale updraft on the horizontal airflow and the mixing of evere convective activities may be reasonable interpretation for phenomenaabove. Corresponding to the decrease of CAPE, the local shear also diminishes in the regime of evere convection. As a result, the Richarson number holds between 1~5, which would benefitfor the maintenance of supercell.
关键词
强对流云 /
CAPE /
垂直风切变 /
理查孙数
{{custom_keyword}} /
Key words
Severe convection cl /
CAPE /
Vertical wind shear /
Richardson number
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]许焕斌, 段英, 刘海月. 雹云物理与防雹的原理和设计(第二版)[M]. 北京: 气象出版社, 2006: 8: 27-29
[2]丁一汇, 章名立, 李鸿洲. 暴雨和强对流发生条件的比较分析[J]. 大气科学, 1981, 5(4): 388-397
[3]蔡则怡. 我国强对流发生前的能量储存机制[J]. 大气科学, 1985, 9(4): 377-386
[4]翟国庆, 俞樟孝. 强对流天气发生前期的地面风场特征[J]. 大气科学, 1992, 16(5): 522-529
[5]孙莹, 寿绍文, 沈新勇. 广西地区一次强冰雹天气过程形成机制分析[J]. 高原气象, 2008, 27(3): 677-684
[6]王思微, 许焕斌. 关于影响超级对流单体形成因素的数值试验[J]. 高原气象, 1991, 10(2): 217-224
[7]徐文俊. 风速垂直切变环境中对流运动和水平涡度的数值研究[J]. 高原气象, 1982, 1(1): 44-52
[8]Weisman M L, J B Klemp. The dependence of numerically simulated convective storms in vertical wind shear and buoyancy[J]. Mon Wea Rev, 1982, 110: 504-520
[9]Weisman M L, J B Klemp. The structure and classification of numerically simulated convective storms in directionally varying wind shears[J]. Mon Wea Rev, 1984, 112: 2479-2498
[10]张鸿发, 左洪超, 陈成品. 一例长生命史雷暴云分裂过程的回波特征[J]. 高原气象, 2004, 23(1): 40-47
[11]王秀明, 钟青, 韩慎友. 一次冰雹天气强对流(雹)云演变及超级单体三维结构的个例模拟研究[J]. 高原气象, 2009, 28(2): 352-365
[12]黎清才, 高守亭. 强对流天气发生机制的一种研究[J]. 大气科学, 1991, 2(4): 385-391
[13]李耀东, 刘健文, 高守亭. 动力和能量参数在强对流天气预报中的应用研究[J]. 气象学报, 2004, 61(4): 401-409
[14]Horvath A, I Geresdi. Severe convective storms and associated phenomena in Hungary[J]. Atmos Res, 2001, 56: 127-146
[15]Rotunno R, J B Klemp. The influence of the shear-induced pressure gradient on thunderstorm motion[J]. Mon Wea Rev, 1982, 110: 136-151
[16]张大林等. 中尺度暴雨分析与动力学(一)(中尺度暴雨夏季讲习班讲稿2005)[Z]. 29
[17]许焕斌. 湿中性垂直运动条件和中β系统的形成[J]. 气象学报, 1997, 55(5): 602-610