利用广义帕雷托分布拟合中国东部日极端降水的试验

江志红;丁裕国;朱莲芳;张金铃;朱连华

PDF(3822 KB)
高原气象 ›› 2009, Vol. 28 ›› Issue (3) : 573-580.
论文

利用广义帕雷托分布拟合中国东部日极端降水的试验

  • 江志红;丁裕国;朱莲芳;张金铃;朱连华
作者信息 +

Extreme Precipitation Experimentation over EasternChina Based on Generalized Pareto Distribution

Author information +
History +

摘要

引进广义帕雷托分布拟合我国东部地区78个测站夏季(5~9月)逐日极端降水量。结果表明, 不同门限值条件下的逐日降水量所拟合的降水极值概率分布均符合广义帕雷托分布, 与其它极值分布如广义极值(下称GEV)分布模式相比, 以GPD模式为最优。根据现代气候条件, 分别计算了50年一遇和100年一遇的极端降水量分位数并分析其空间分布特征, 两者基本一致, 总体上都呈现出由东南向西北方减小的趋势, 且南北差异较大, 南方的极端降水量值可能达到北方地区的两倍以上。此外, 资料年份越长, 拟合效果越好。

Abstract

The Generalized Pareto Distribution (GPD) is introduced to simulate the daily extreme precipitation at 78 stations over Eastern China from May to September. The results indicate that the probability distribution of the daily extreme precipitation is subjected to GPD under the different threshold, and GPD is superior to other extreme value distributions such as Generalized Extreme Value Distribution (GEV). According to the observed climatic conditions from 1951\_2000, the 50\|year and 100\|year return values of annual extreme precipitation are calculated, respectively and the space distribution features are analyzed. They are in substantial agreement which in general present downtrend from southeast to northwest, while there are obvious differences between south and north and the return valuesin the former area may reach more than twice compared to the latter one. In addition, the larger size of observed time series is, the better of the fitting is.

关键词

广义帕雷托分布 / 中国东部地区夏季日极 / 概率分布拟合

Key words

Generalized Pareto D / Extreme precipitatio / Probability distribu

引用本文

导出引用
江志红;丁裕国;朱莲芳;张金铃;朱连华. 利用广义帕雷托分布拟合中国东部日极端降水的试验. 高原气象. 2009, 28(3): 573-580
江志红;丁裕国;朱莲芳;张金铃;朱连华. Extreme Precipitation Experimentation over EasternChina Based on Generalized Pareto Distribution. Plateau Meteorology. 2009, 28(3): 573-580

参考文献

[1]IPCC. Climate Change 1995: The Second IPCC Scientific AssessmentWMO/UNEP[R]//Houghton J T, et al. CambridgeUniversity Press, Intergovernmental Panel on Climate Change, 1995: 572
[2]Leadbetter M R, G Lindgren, H Rootzen. Extremes and related properties of random sequences and process [M]. Springer\|Verlag, 1983: 336
[3]Mearns Katz R W. Extreme high\|temperature events in their probabilitieschanges in mean temperature[J]. Climate and Appl Meteor, 1984, 23(2): 1601-1613
[4]Groisman P Ya, T R Karl, D R Easterling, et al. Changes in the probability of heavy precipitation: Important indicators of climatic change[J]. Clim Change, 1999, 42: 243-283
[5]Easterling D R, J L Evans, P Ya Groisman, et al. Observed variability and trends in extreme climate events[J]. Bull Amer Meteor Soc, 2000, 81: 417-425
[6]Panmao Zhai, Anjing Sun, Funmin Ren, et al. Changes of Climate Extremes in China [J]. Climatic Change, 1999, 42: 203-218
[7]翟盘茂, 任福民, 张强.中国降水极值变化趋势检验[J].气象学报, 1999, 57(2): 208-216
[8]翟盘茂, 周琴芳.北半球雪盖与中国夏季降水[J]应用气象学报, 1997, 8(2): 241-246
[9]Zhai P M, R E Eskridge.Atmospheric water vapor over China[J].J Climate, 1997,10: 2643-2652
[10]程炳岩, 丁裕国, 汪方. 非正态分布的天气气候序列极值特征诊断方法研究[J]. 大气科学, 2003, 27(5): 920-928
[11]丁裕国, 金莲姬, 刘晶淼. 极端天气气候时间序列极值特征的一种新方法[J]. 大气科学, 2002, 26(3): 343—351
[12]王柏均, 陈刚毅. 渐近极值理论在气候极值降水预测中的应用[J]. 成都气象学院学报, 1994, 9(2): 30-34
[13]孟庆珍, 张杏敏. 成都地面最低气温年极值的渐近分布[J]. 成都气象学院学报, 1997, 12(2): 130-138
[14]丁裕国, 刘吉峰, 张耀存. 基于概率加权估计的中国极端气温时空分布模拟试验[J]. 大气科学, 2004, 28(5): 771-782
[15]蔡敏, 丁裕国, 江志红. 我国东部极端降水时空分布及其概率特征[J]. 高原气象, 2007,26(2): 263-269
[16]刘吉峰,丁裕国, 江志红. 全球变暖加剧对极端气候概率影响的初步探讨[J]. 高原气象,2007, 26(4): 837-842
[17]程炳岩, 丁裕国, 张金铃, 等. 广义帕雷托分布在重庆暴雨强降水研究中的应用[J]. 高原气象, 2008, 27(5): 1004-1009
[18]Simiu E, N A Heckert. Extreme wind distribution tails: a peaks over threshold′ approach[J]. J Structural Engineering, 1996, 5: 539-547
[19]Brabson B B, J P Palutikof. Tests of the generalized pareto distribution for predicting extreme wind speeds[J]. J Appl Meteor, 2000, 39: 1627-1639
[20]Palutikof J P, B B Brabson, D H Lister, et al. A review of methods to calculate extreme wind speeds[J]. Meteor Appl, 1999, 6: 119-132
[21]么枕生, 丁裕国. 气候统计[M]. 北京: 气象出版社, 1990: 776-788
[22]Hosking J R M. L\|moment\|analysis and estimation of distributions using linear combinations of order\|statistics[J]. J R Stat Soc B, 1990, 52: 105-124
PDF(3822 KB)

1098

Accesses

0

Citation

Detail

段落导航
相关文章

/