利用常规观测资料和NCEP 1°×1°格点再分析资料, 对滇黔准静止锋上的低温雨雪冰冻天气(简称08冻雨过程)及阴雨天气(简称09阴雨天气)的锋区结构特征及准静止锋的形成和维持进行了对比分析。锋区结构共同点表现在: 在水平方向上, 准静止锋在850 hPa的水平温度梯度大, 是等温线密集区; 锋后低空逆温显著, 平均逆温强度达2~8℃, 逆温中心位于贵州东部-湖南西部之间。在垂直方向上, 锋区表现为等θse的密集区, 锋区在经向上向北倾斜, 向上伸展高度接近600 hPa附近; 准静止锋天气一旦持续, 锋区在850 hPa上表现为正的涡度带以及水平风的辐合区; 与准静止锋锋生密切相关的锋生函数为正值。不同点表现在: 近地面温度场垂直结构的差异是导致准静止锋降水属性不同的重要原因; 在08冻雨过程中, 温度场在垂直方向不仅具有“冷暖冷”的结构特征, 还具有较深厚的“一层模式”结构特征。在09阴雨天气中, 低空温度场存在冷中心, 但温度高于0℃。在锋区结构上, 08冻雨过程表现为宽而平缓且向北倾斜, 09阴雨天气在750 hPa以下表现为狭窄而陡峭, 并在16°~17°N之间存在副热带锋区。造成锋区结构特征差异的重要原因在于, 锋生函数的水平辐合项和变性项对准静止锋的贡献存在差异。
Abstract
The frontal structure features of quasi-stationary front in two precipitation processes of Yunnan and Guizhou and its formation and maintenance are analysed. The two precipitation processes are the cryogenic freezing rain and snow weather at the beginning of 2008 and low-temperature and rain weather at the beginning of the spring in 2009. There are both similar and different features. The similar features are: In the horizontal direction, 850 hPa temperature gradient are dense and the frontal zone are the compact district of isotherm. Behind the frontal zone, the low level inversion is very significant, the average inversion intensity is 2~8℃, its center lies between the eastern Guizhou and the western Hunan. In the vertical direction, the frontal zone are the compact district of the pseudoequivent potential temperature, it slopes northward and stretch upwards near 600 hPa.The frontal zone are the positive vorticity zone and the convergence zone of the horizontal wind on 850 hPa when the quasi-stationary front continus. The frontogenetical functionthat connected with quasi-stationary front both are positive. Yet the different feature are: the temperature difference of the surface layer is an important reason. In the vertical direction, the temperature field have not only cold-warm-cold characteristics but also one-level model characteristic in 2008, on the contrary, the temperature field has not the two characteristics in 2009. The low-level temperature field has cold center, which is above 0℃. The frontal structure are wide and gently slope northward in 2008, but it is narrow and sharp below 750 hPa in 2009. At the same time, there is an low subtropic frontal zone between16°~17°N. The important difference causing frontal structure is that the horizontal convergence and denaturation of the frontogenetical function are difference to quasi-stationary front.
关键词
滇黔 /
准静止锋 /
锋区结构特征 /
锋生函数
{{custom_keyword}} /
Key words
Yunnan-Guizhou /
Quasi-stationary fro /
Frontal structure fe /
Frontogenetical func
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]段旭,李英,孙晓东.昆明准静止锋结构[J].高原气象, 2002, 21(2): 205-209.
[2]张腾飞,鲁亚斌,张杰,等.一次低纬高原地区大到暴雪天气过程的诊断分析[J].高原气象, 2006, 25(4): 696-703.
[3]李英, 段旭,潘丽娜. 昆明准静止锋的准地转Q矢量分析[J]. 气象, 1999, 8: 6-10.
[4]尤红,曹中和,郭文华,等.昆明静止锋下的云南强倒春寒天气分析[J].气象, 2006, 32(3): 56-62.
[5]许丹,罗喜平.贵州凝冻的时空分布特征和环流成因分析[J].高原气象, 2003, 22(4): 401-404.
[6]严小东,吴战平,古书鸿.贵州冻雨时空分布特征及其影响因素浅析[J].高原气象, 2009, 28(3): 694-701.
[7]杨贵名,毛冬艳,孔期. “低温雨雪冰冻”天气过程锋区特征分析[J].气象学报, 2009, 67(4): 652-665.
[8]陶祖钰,郑永光,张小玲. 2008年初冰雪灾害和华南静止锋[J].气象学报, 2008, 66(5): 850-854.
[9]李登文,乔琪,魏涛. 2008年我国南方冻雨雪天气环流及垂直结构分析[J].高原气象, 2009, 28(5): 1140-1148.
[10]赵思雄,孙建华. 2008年初南方雨雪冰冻天气的环流场与多尺度特征[J]. 气候与环境研究, 2008, 13(4): 351-367.
[11]何立富.长江中下游地区持续阴雨天气呈现四大特点.中国气象局官方网, 2009: 3, 5.
[12]杜正静, 丁治英,张书余. 2001年1月滇黔准静止锋在演变过程中的结构及大气环流特征分析[J]. 热带气象学报,2007, 23(3): 284-292.
[13]陶诗言,卫捷. 2008年1月我国南方严重冰雪灾害过程分析[J].气候与环境研究, 2008, 13(4): 337-350.
[14]孙建华, 赵思雄. 2008年初南方雨雪冰冻灾害天气静止锋与层结结构分析[J]. 气候与环境研究, 2008, 13(4): 368-384.
[15]张小玲, 程麟生. “96.1”暴雪期中尺度切变线发生发展的动力诊断Ⅰ: 涡度和涡度变率诊断[J]. 高原气象, 2000, 19(3): 285-294.
[16]张小玲, 程麟生.“96. 1”暴雪期中尺度切变线发生发展的动力诊断Ⅱ: 散度和散度变率诊断[J]. 高原气象, 2000, 19(4): 459-466.
[17]王建捷,陶诗言. 1998梅雨锋的结构特征及形成与维持[J].应用气象学报, 2002, 13(5): 526-534.
[18]GAO Shouting, ZHOU Yushu, LEI Ting. Structural features of the Meiyu front system[J]. Acta Meteor Sin, 2002, 16(2): 195-204.
[19]丁一汇.高等天气学(第二版)[M].北京: 气象出版社, 2005: 117-123.
[20]BergeronR. The distribution temperature and wind connected with active tropical air in the higher troposphere and some remarks concerning clear air turbulence at high altitude[J]. Tellus, 1952, 4: 43-53.