针对上海地区强降水过程预报, 根据大气低频振荡特性和使用Micaps 700 hPa位势高度场资料, 提出了一种新的预报方法——“天气关键区大气低频波延伸期预报方法”, 确定了天气关键区的范围和分析了天气关键区的低频变化特征。该方法的重点内容是天气关键区的低频波特征, 各关键区低频气流辐合及其与降水过程的联系。2010年该方法在上海春季业务预报中取得了比较好的预报结果, 尤其是对重大事件的预报服务。
Abstract
According to the specificity of atmospheric low-frequency oscillation and using 700 hPa geopotential height data, aiming at forecast of stronger precipitation processes in Shanghai region, a new method of extended range forecast of atmospheric low-frequency wave (LFWFM) is introduced recently. Meanwhiles the synoptic key regions are determined and the characteristics of low-frequency wave in key regions are analyzed. The main points for technique methods of LFWFM are the variation feature of low-frequency wave and the convergence between the south and north low-frequency airflow to cause stronger precipitation processes. The LFWFM has shown the good forecast results in Shanghai region from March to May 2010. Specially, the prediction service for the important events is better.
关键词
天气关键区 /
大气低频波 /
延伸期预报
{{custom_keyword}} /
Key words
Synoptic key region /
Atmospheric low-freq /
Extended range forec
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]丑纪范.大气科学中的非线性与复杂性[M]. 北京: 气象出版社, 2002: 131-161.
[2]孙国武, 信飞, 陈伯民, 等. 低频天气图预报方法[J].高原气象, 2008, 27(增刊): 64-68.
[3]孙国武, 信飞, 孔春燕, 等. 大气低频振荡与延伸期预报[J].高原气象, 2010, 29(5): 1142-1147.
[4]信飞, 孙国武, 陈伯民. 自回归统计模型在延伸期预报中的应用[J].高原气象, 2008, 27(增刊): 69-75.
[5]陈丽娟, 陈伯民, 张培群, 等. T63模式月动力延伸期预报高度场的改进试验[J].应用气象学报, 2005, 16(增刊): 92-96.
[6]覃志年, 李维京, 何慧, 等. 广西6月区域性暴雨过程延伸期预报高度场的改进试验[J].应用气象学报, 2009, 28(3): 668-693.
[7]占瑞芬, 孙国武, 赵兵科, 等. 中国东部副热带夏季风降水的准双周振荡及其可能维持机制[J].高原气象, 2008, 27(增刊): 98-108.
[8]丁瑞强, 李建平. 非线性误差增长理论在大气可预报性中的应用[J].气象学报, 2009, 67(2): 241-249.
[9]丁瑞强, 李建平. 天气可预报性的时空分布[J].气象学报, 2009, 67(3): 343-354.
[10]Wheel M C, Hendon H H. An all-season real-time multivariate MJO index : Development of an index for monitoring and prediction [J]. Mon Wea Rev, 2004, 132: 1917-1932.
[11]Jones C, Carvalho M V, Higgins R W, et al. A statistical forecast model of tropical introseasonal convective anomalies [J]. J Climate, 2004, 17: 2078-2094.
[12]Galin M B. Study of the low-frequency variability of the atmospheric general circulation with the use of time-dependent empirical orthogonal functions [J]. Atmos Ocean Phy, 2007, 43(1): 15-23.
[13]Jin F F, Pan L L. Dynamics of synoptic eddy and low-frequency flow interaction. PartⅠ: A linear closure[J]. J Atmos Sci, 2006, 63(7): 1677-1694.
[14]Jin F F, Pan L L. Dynamics of synoptic eddy and low-frequency flow interaction. PartⅡ: A theory for low-frequency modes[J]. J Atmos Sci, 2006, 63(7): 1695-1708.
[15]Jin F F, Pan L L. Dynamics of synoptic eddy and low-frequency flow interaction. PartⅢ: Baroclinic model results[J]. J Atmos Sci, 2006, 63(7): 1709-1725.
[16]Sun Guowu, Chen Baode. Oscillation characteristics and meridional propagation of atmospheric low frequency waves over Qinghai-Xizang Plateau[J]. Chinese J Atmos Sci, 1989, 12: 293-300.
[17]章基嘉, 孙国武, 陈葆德.青藏高原大气低频变化的研究[M].北京: 气象出版社, 1991: 105-106.
[18]孙国武, 何金海.中国气象局气象新技术推广项目《低频天气系统预报技术及业务化应用》技术总结[Z]. 2009.
[19]Shanks J L. Recursion filters for digital processing[J]. Geophysica, 1967, 32: 31-33.