华南暖区强对流降水系统的结构和闪电特征分析

张诚忠;万齐林;杨兆礼;丁伟钰;陈子通;黄燕燕

PDF(1568 KB)
高原气象 ›› 2011, Vol. 30 ›› Issue (4) : 1034-1045.
论文

华南暖区强对流降水系统的结构和闪电特征分析

  • 张诚忠;万齐林;杨兆礼;丁伟钰;陈子通;黄燕燕
作者信息 +

Characteristic Analysis of Structure and Lightning for ConvectiveSystem Produced Heavy Precipitation in Warm Sector of South China

Author information +
History +

摘要

利用加密地面观测资料、 多普勒雷达资料及广东省地闪资料, 研究了24 h内影响华南珠江三角洲的两次中尺度强降水系统的结构特征和地闪特征。结果表明: (1)第一次对流系统以后建型方式(back-building)组建, 垂直结构类似海上对流, 水平结构类似平行层状的对流系统。第二次对流系统垂直结构倾向于陆地的对流, 水平结构类似于拖曳层状的对流系统。(2)地闪分布特征: 两个系统在其生命史中负地闪占据主导地位; 第一次对流系统在发展期正地闪逐渐增大, 从成熟到衰减期正地闪逐渐减弱, 第二次对流系统从发展到消亡期正地闪逐渐增大。第一次对流系统成熟期: 在低层强回波移动方向右侧为正地闪, 左侧为负地闪。对流系统地闪主要集中在对流区(92.8%的地闪), 部分在对流区下风方(7.2%的地闪)。第二次对流系统特征: 正、 负地闪大部分重叠出现在对流区(78%的地闪), 部分在尾随的层状降水区(22%的地闪)。正、 负地闪在非对流区发生的概率比第一次系统的大。两个系统中88%以上的地闪集中在6 km高度、 回波>25 dBZ以上的范围。

Abstract

The fine density surface observation data, Doppler radar data, and cloud-to-ground (CG) lightning data in Guangdong region were utilized to study the characteristics of structure and CG lightning of two convective systems, which occurred within 24 hours over Zhujiang delta, South China. Results showed that: (1) the first convective system (occurred in morning) exhibits similarity to parallel stratiform MCS, the convective cells in the first system are organized by way of back-building, the vertical structure is similar to those of marine convective. While the second system exhibits similarity to trailing stratiform MCS, the vertical structure tend to those conventions over continent. (2) The characteristics of lightning are as follows: (I) The negative CG lightning predominate in the whole lifetime of convective systems for both the systems. (II) The percent of positive CG lightning gradually increases in its development stage, then decreases from mature to dissipation stages for the first convective system, while the percent of positive CG lightning gradually increases during the lifetime of the second convective system. (III) At the mature stage of the first convective system, the negative CG lightning occurs just behind of intense reflectivity at low level, positive presents its head. Lightning concentrates in intense reflectivity area (92.8% of lightning) and partly occur on the leeward side of intense reflectivity (7.2%). As for the second convective system, the positive and negative CG lightnings mostly overlap in the intense reflectivity area (78%), and partly occur in the stratiform area (22%). The possibility of occurrence of lightning in stratiform region for the second convective system is larger than that of the first convective system. More than 88% of CG lightning occurred in a region with reflectivity value equal or greater than 25 dBZ at the height of 6 km at the mature stage for both the systems. The characteristics of structure of convective system and its lightning are also discussed.Key words: Warm sector of South China; Structure of convection produced precipitation; Characteristics of cloud-to-ground lightning

关键词

华南暖区 / 降水性对流结构 / 地闪特征

引用本文

导出引用
张诚忠;万齐林;杨兆礼;丁伟钰;陈子通;黄燕燕. 华南暖区强对流降水系统的结构和闪电特征分析. 高原气象. 2011, 30(4): 1034-1045
张诚忠;万齐林;杨兆礼;丁伟钰;陈子通;黄燕燕. Characteristic Analysis of Structure and Lightning for ConvectiveSystem Produced Heavy Precipitation in Warm Sector of South China. Plateau Meteorology. 2011, 30(4): 1034-1045

参考文献

[1]PeterT M, RajopadhyayaD K. Vertical Velocity Characteristics of deep convection over Darwin, Australia[J]. Mon Wea Rev, 1999, 151(6): 1056-1071.
[2]广东气象局《广东省天气预报技术手册》编写组.广东省天气预报技术手册[Z].北京: 气象出版社, 2006: 526.
[3]张晓惠, 倪允琪. 华南前汛期锋面对流系统与暖区对流系统的个例分析与对比研究[J]. 气象学报, 2009, 67(1): 108-121.
[4]连志鸾, 高连山, 李国翠, 等. 蒙古东部冷涡造成河北中南部雹暴过程的地闪特征分析[J]. 高原气象, 2009, 28(1): 186-194.
[5]冯桂力, 郄秀书, 周筠. 一次中尺度对流系统的闪电演变特征[J]. 高原气象, 2006, 25(2): 220-228.
[6]冯桂力, 郄秀书, 袁铁, 等. 雹暴的闪电活动特征与降水结构研究[J]. 中国科学(D 辑), 2007, 37(1): 123-132.
[7]张义军, 孟青, 吕伟涛, 等. 两次超级单体雷暴的电荷结构及其地闪特征[J].科学通报, 2005, 50(23): 2663-2675.
[8]崔海华, 郄秀书, 张其林, 等. 甘肃中川地区云闪的多站同步观测及雷暴的等效电荷结构[J]. 高原气象, 2009, 28(4): 808-815.
[9]张廷龙, 言穆弘, 张彤, 等. 利用地面电场对中川地区一次雷暴过程电荷结构的研究[J]. 高原气象, 2010, 29(6): 1524-1532.
[10]赵丽娟, 牛生杰, 张羽, 等. 雷州半岛盛夏闪电活动特征及其与降水的联系[J]. 高原气象, 2009, 28(3): 663-668.
[11]刘岩, 王振会, 康凤琴, 等. 浙江和甘肃两地区地闪特征的初步对比分析[J]. 高原气象, 2009, 28(3): 197-202.
[12]易燕明, 杨兆礼, 万齐林, 等近50年广东省雷暴、 闪电时空变化特征的研究[J].热带气象学报, 2006, 16(1): 46-53.
[13]Yuter S E, Houze R A.Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity[J]. Mon Wea Rev, 1995, 123(7): 1941-1963.
[14]Parker M D, Johnson R H.Organizational modes of midlatitude mesoscale convective systems[J]. Mon Wea Rev, 2000, 128:3413-3436.
[15]程麟生, 冯伍虎. 中纬度中尺度对流系统研究的若干进展[J]. 高原气象, 2002, 21(4):337-347.
[16]Zipser E J, Lutz K R.The vertical profileof radar reflectivity of convective cells: A strongindicator of storm intensity and lightning probability?[J]. Mon Wea Rev, 1994, 122: 1751-1759.
[17]陈渭民编著.雷电学原理[M].北京: 气象出版社, 2006: 419.
[18]LeMone M A, Zipser E J, Trier S B.The role ofenvironmental shear and thermodynamic conditions in determiningthe structure and evolution of mesoscale convective systems during TOGA COARE[J]. J Atmos Sci, 1998: 55(4): 3493-3518.
[19]Rutledge S A, MacGorman D R.Cloud-to-ground lightning activity in the 10–11 June 1985 mesoscale convective system observed during the Oklahoma-Kansas PRE-STORM project[J]. Mon Wea Rev, 1988, 116: 1393-1408.
[20]Rutledge S A, Lu C, MacGorman D R.Positive cloud to ground lightning in mesoscale convective system[J]. J Atmos Sci, 1990, 47: 4085-2100.
[21]Jorgensen D P, LeMone M A.Verticalvelocity characteristics of oceanic convection[J]. J Atmos Sci, 1989, 46: 621-640.
PDF(1568 KB)

1393

Accesses

0

Citation

Detail

段落导航
相关文章

/