利用济南CINRAD/SA雷达探测资料, 结合卫星、 自动站和其他常规天气资料, 分析了一次弓状回波和强对流风暴的发生、 发展, 弓状回波和强对流风暴合并形成新弓状回波后又演变成逗点回波的过程。结果表明: (1)强对流过程发生在东北低涡横槽转竖过程, 大气环境具有较大的对流有效位能和中等强度的低层垂直风切变。FY-2C卫星的红外云图显示, 产生弓状回波的云团是在邻近云团的出流边界影响下发展\, 加强的, 而地面自动站资料清楚地显示出弓状回波影响区域温、 压、 湿等在20 min内发生的剧烈变化。(2)多普勒雷达产品资料分析表明, 这是一次典型的弓状回波过程, 系统演变经历了典型弓状回波演变过程的每一个阶段: 高大对流回波、 弓形和矛状阶段及逗点回波阶段。(3)强对流风暴出现在弓状回波前沿约75 km的暖区中, 具有普通超级单体的一些特征, 移动缓慢。(4)弓状回波和强对流风暴合并阶段, 弓状回波已处于逗点云系的后期。超级单体逐渐靠近弓状回波的颈部, 在短时减弱后又快速发展并填补了弓状回波减弱部分。在弓状回波后侧强入流作用下, 超级单体发展成弓状回波, 并很快演变成逗点云系, 其旋转头部发展很强并产生灾害性大风。
Abstract
Using CINRAD/SA radar data in Jinan, combined with satellite, automatic weather station and other conventional data, the research about occurrenceanddevelopmentof a bow echo and severe convective stormwas studied in this paper. Bow echo and severe convective storms merged to form new bow echo, and it then developed by the process into comma echo. Firstly, Convective process tookplace under the background of horizontaltrough turning to vertical trough. The atmospheric environment existed large convective available potential energy(CAPE)and moderate-intensity low vertical wind shear. FY-2C satellite infrared images clearly showedthat the development andenhancement of bow echowere influenced by outflow boundary of neighbor cloud. At the same time, thetemperature, pressureand humidity observed from automatic weather station had strong changes within 20 min, obviously. Secondly, the result obtained from Doppler radar data indicated that it was a typical bow echo process, because the system evolved through a typical evolution of the bow echo at every stage, such as tall convective echoes, bow and spear-shaped stage, comma echo. Thirdly, the severe convective storm was in the warm area in front of bow echo about 75 km and moved slowly, with some characteristics of common storms. At last, during the stage about bow echo and severe convective storm merging, the bow echo was already in late comma-cloud system. With time going on, the supercell gradually closed to the neck of bow echo. After experienced short decrease, it strengthened rapidly and filled the weakened part of the bow echo. Supercell developed into bow echo withstrong rear inflow in the bow echo, and soon evolved into a comma cloud. The disastrous wind was produced at the rotating head of comma cloud.
关键词
弓状回波 /
强对流风暴 /
下击暴流 /
多普勒雷达
{{custom_keyword}} /
Key words
Bow echo /
Severe convective st /
Downburst /
Doppler weather rada
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]Fujita T T .Manual of downburst identification for project NIMROD[R]. SMRP Res. Paper No. 156 [NTIS No. N78-30771/7GI], Univ of Chicago, 1978: 104.
[2]Fujita T T. Objectives, operation, and results of Project NIMROD[C]. Preprints, 11th Conf. on Severe Local Storms, Kansas City, Amer Meteor Soc, 1979: 259-266.
[3]Przybylinski R W, Gery W J. The reliability of the bow echo as an important severe weather signature[C]. Preprints, 13th Conf. on Severe Local Storms, Tulsa, OK, Amer Meteor Soc, 1983: 270-273.
[4]Przybylinski R W, DeCaire D M.Radar signatures associated with the derecho, a type of mesoscale convective system[C]. Preprints, 14th Conf. on Severe Local Storms, Indianapolis, IN, Amer Meteor Soc, 1985: 228-231.
[5]Smull B F, Houze R A.A midlatitude squall line with a trailing region of stratiform rain: Radar and satellite observations[J]. Mon Wea Rev, 1985, 113(1): 117-133.
[6]Burgess D W, Smull B F.Doppler radar observations of a bow echo associated with a long-track severe windstorm[C]. Preprints, 16th Conf. On Severe Local Storms, Kananaskis Park, AB, Canada, Amer Meteor Soc, 1990: 203-208.
[7]Funk T W, Darmofal K E, Kirkpatrick J D, et al.Storm reflectivity and mesocyclone evolution associated with the 15 April 1994 squall line over Kentucky and Southern Indiana[J]. Weather Forecasting, 1999, 14(6): 976-993.
[8]Przybylinski R W. The bow echo: Observations, numerical, and severe weather detection methods[J].Weather Forecasting,1995, 10(2): 203-218.
[9]Klimowski B A, Hjelmfelt M R, Bunkers M J.Radar observations of the early evolution of bow echoes[J]. Weather Forecasting,2004, 19(4): 727-734.
[10]Wolf R, Przybylinski R W, Berg P.Observations of a merging bowing segment and supercell[C]. Preprints, 18th Conf. on Severe Local Storms, San Francisco, CA, Amer Meteor Soc, 1996: 740-745.
[11]Wolf R R.WSR-88D radar depiction of supercell bow echo interaction: Unexpected evolution of a large, tornadic,‘comma-shaped’ supercell over Eastern Oklahoma[J]. Weather Forecasting, 1998, 13(2): 492-504.
[12]俞小鼎, 王迎春, 陈明轩, 等. 新一代天气雷达与强对流天气预警[J]. 高原气象, 2005, 24(3): 456-464.
[13]伍志芳, 张春良, 张沛源. 一次强对流天气的多普勒特征分析[J]. 高原气象, 2001, 20(2): 202-207.
[14]漆梁波, 陈永林. 一次长江三角洲飑线的综合分析[J]. 应用气象学报, 2004, 15(2): 162-173.
[15]胡淑兰, 武麦风, 王旭仙, 等. 关中东部连续性冰雹特征分析[J]. 高原气象, 2006, 25(1): 159-163.
[16]张腾飞, 段旭, 鲁亚斌, 等. 云南一次强对流天气冰雹过程的环流及雷达回波特征分析[J]. 高原气象, 2006, 25(3): 531-538.
[17]付双喜, 王致君, 张杰. 甘肃中部一次强对流天气的多普勒雷达特征分析[J]. 高原气象, 2006, 25(5): 932-941.
[18]谢健标, 林良勋, 颜文胜, 等. 广东2005年“3·22”强飑线天气过程分析[J]. 应用气象学报, 2007, 18(3): 321-329.
[19]侯建忠, 王繁强, 方建刚, 等. 黄土高原一次冷涡飑线的综合分析与数值模拟[J]. 高原气象, 2007, 26(2): 353-362.
[20]刘冬霞, 郄秀书, 冯桂力, 等. 华北一次强对流天气系统的地闪时空演变特征分析[J]. 高原气象, 2008, 27(2): 358-364.
[21]姚叶青, 俞小鼎, 张义军, 等. 一次典型飑线过程多普勒天气雷达资料分析[J]. 高原气象, 2008, 27(2): 373-381.
[22]廖晓农, 俞小鼎, 王迎春. 北京地区一次罕见的雷暴大风过程特征分析[J]. 高原气象, 2008, 27(6): 1350-1362.
[23]赵俊荣, 晋绿生, 郭金强, 等. 天山北坡中部一次强对流天气中小尺度系统特征分析[J]. 高原气象, 2009, 28(6): 1044-1050.
[24]王晓芳, 胡伯威, 李灿. 湖北一次飑线过程的观测分析及数值模拟[J]. 高原气象, 2010, 29(2): 471-485.
[25]刁秀广, 杨传凤, 李静, 等. 超级单体强度和流场结构分析[J]. 高原气象, 2011, 30(2): 489-497.
[26]DustanM W, RobertJ T.Radar and damage analysis of severe bow echoes observed during BAMEX[J]. Mon Wea Rev, 2006, 134(3): 791-806.