南京市灰霾影响因子的数值模拟

吕梦瑶;刘红年*;张宁;蒋维楣

PDF(1367 KB)
高原气象 ›› 2011, Vol. 30 ›› Issue (4) : 929-941.
论文

南京市灰霾影响因子的数值模拟

  • 吕梦瑶;刘红年*;张宁;蒋维楣
作者信息 +

Numerical Simulation of Impact Factors of Urban Haze in Nanjing Area

Author information +
History +

摘要

利用改进的南京大学空气质量预报系统(NJU-CAQPS), 对2005年1月7日南京典型天气条件形成的污染过程进行了数值模拟, 分析了城市人为热源、 城市建筑物效应和不同类型人为热源排放对该区域主要污染物分布的贡献及对能见度造成的影响。结果表明, 城区日平均能见度最低可达8 km以下, 一天之中有18 h主城区地表能见度低于10 km, 属于典型灰霾天气; 工业点源排放对地表SO2日平均浓度贡献最大, 最大值达到110 μg·m-3以上; 流动源(即机动车源)排放对地表NO2日平均浓度贡献最大, 最大值达到70 μg·m-3以上; 面源排放和点源排放对地表PM2.5日平均浓度贡献最大, 最大值分别达到100 μg·m-3和45 μg·m-3以上。人为热源使低层大气温度升高、 风场幅合, 主城区垂直向上速度增大, 从而降低了主城区地表污染物浓度, 使能见度上升, 灰霾影响面积减少了20.2 km2。建筑物效应使主城区水平风速减小, 污染物在主城区及上风方向聚集, 浓度上升, 在建筑物平均高度较高和密度较大的区域, 细粒子PM2.5浓度比没有建筑物时约高10 μg·m-3, 相应地, 主城区能见度下降, 最大降幅可达2 km, 灰霾持续时间增加了2 h, 灰霾面积约增加了134 km2。

Abstract

Air pollution process in Nanjing on 7 January 2005 induced by typical weather condition was simulated with the modified Nanjing University City Air Quality Prediction System (NJU-CAQPS). The contribution ratios of urban anthropogenic heat source, urban buildings and various anthropogenic heat sources to the concentration of several main pollutants and the impacts of the anthropogenic heat sources on visibility distribution were analyzed. The result shows that in main urban district, the daily average surface visibility reduced below 8 km, and the hourly surface visibility is less than 10 km for 18 h in one day; this condition should be considered as a heavy haze process. The industrial point source dominates mostly the daily average surface concentration of SO2, its peak value is above 110 μg·m-3; mobile source contributs the most to the daily average NO2 surface concentration, its peak value is above 70 μg·m-3; area and point sources have the significant contribution to the daily average surface concentration of PM2.5, the peak value is more than 100 μg·m-3 and 45 μg·m-3, respectively. Due to the anthropogenic heat source release, the lower layer temperature air increased and wind converged, the vertical speed over urban district increased, all these lead to the decreases of surface concentration of SO2, NO2, PM2.5 in urban district, the surface visibility increased correspondingly, and the area of regions over where visibility less than 10 km has decreased 20.2 km2. The horizontal wind speed over urban district decreased because of the building distribution, so that mass of pollutants concentrate over urban area and upper drift to the urban district, and in this district the concentration of various pollutants obviously increased. The concentration of fine particles (PM2.5) has increased 10 μg·m-3, comparing with the case without building effects. The comparison also showed that the ground visibility could decrease by a maximum of 2 km, the duration of visibility below 10 km increased by 2 hours, and the area of regions with haze increased by 134.2 km2 when the simulation concerned about the effects of buildings rather than not.

关键词

南京 / 城市灰霾 / 人为热源 / 建筑物动力效应 / 城市能见度

Key words

Nanjing / Urban haze / Anthropogenic heat s / Dynamics effect of b / Urban visibility

引用本文

导出引用
吕梦瑶;刘红年*;张宁;蒋维楣. 南京市灰霾影响因子的数值模拟. 高原气象. 2011, 30(4): 929-941
吕梦瑶;刘红年*;张宁;蒋维楣. Numerical Simulation of Impact Factors of Urban Haze in Nanjing Area. Plateau Meteorology. 2011, 30(4): 929-941

参考文献

[1]QX/T 113-2010, \!霾(灰霾)的观测和预报等级\"[S]. 中华人民共和国气象行业标准. 2010-6-1, 1-2.
[2]吴兑.关于霾与雾的区别和灰霾天气预警的讨论[J].气象, 2005, 31(4): 3-7.
[3]吴兑. 沿海工业城市灰霾天气增多与海盐气溶胶粒子的关系[J].广东气象, 2009, 31(2), 1-3.
[4]白志鹏, 董海燕, 蔡斌彬, 等.灰霾与能见度研究进展[J]. 过程工程学报, 6(增刊2): 36-41.
[5]杨复沫, 贺克斌, 马永亮, 等.北京大气细粒子PM2.5的化学组成[J].清华大学学报(自然科学版), 2002, 42(12): 1605-1608.
[6]牛彧文, 何凌燕, 胡敏, 等.深圳冬、 夏季大气细粒子及其二次组分的污染特征[J].中国科学(B辑), 2006, 36 (2): 173-180.
[7]Charleson R J, Ahlquist N C, Horvath H. On the generality of correlation of atmospheric aerosol mass concentration and light scatter[J]. Atmos Environ, 1968, 2(5): 455-464.
[8]Noll K E, Mueller P K, Inada M. Visibility and aerosol concentration in urban air[J]. Atmos Environ, 1968, 2(5): 465-475.
[9]Doyle M, Dorling S. Visibility trends in the UK 1950-1997[J]. Atmos Environ, 2002, 36(19): 3161-3172.
[10]Schichtel B A, Husar R B, Falke S R, et al. Haze trends over the United States 1980-1995[J]. Atmos Environ, 2001, 35(30): 5205-5210.
[11]马雁军, 左洪超, 张云海, 等. 辽宁中部城市群大气能见度变化趋势及影响因子分[J]. 高原气象, 2005, 24 (4): 623-628.
[12]赵庆云, 张武, 王式功. 空气污染与大气能见度及环流特征的研究[J]. 高原气象, 2003, 22 (4): 393-395.
[13]范引琪, 李春强. 1980-2003年京津冀地区大气能见度变化趋势研究[J]. 高原气象, 2008, 27(6): 1392-1400.
[14]中国科学院大气物理研究所大气边界层物理与大气化学重点实验室. 空气污染数值预报模式系统[M]. 北京: 气象科学出版社, 1999: 4-45.
[15]王自发, 谢付莹, 王喜全, 等. 嵌套网格空气质量预报模式系统的发展与应用[J]. 大气科学, 2006, 30 (5): 778-790.
[16]朱蓉, 徐大海, 孟燕君, 等. 城市空气质量数值预报系统 CAPPS及其应用[J]. 应用气象学报, 2001, 12(3): 267-278.
[17]房小怡, 蒋维楣, 吴涧, 等. 城市空气质量数值预报模式系统及其应用[J]. 环境科学学报, 2004, 24(1): 111-115.
[18]Fang Xiaoyi, Jiang Weimei, Miao Shiguang, et al. The multi-scale numerical modeling system for the research on the relationship between urban planning and meteorological environment[J]. Adv Atmos Sci, 2004, 21(4): 103-112.
[19]陈训来, 冯业荣, 王安宇, 等. 珠江三角洲城市群灰霾天气主要污染物的数值研究[J]. 中山大学学报(自然科学版), 2007, 46(4): 103-107.
[20]周春红, 张小曳, 龚山陵. 区域灰霾数值预报系统的初步研发[C]. 大气成分观测、 研究与预报分会场论文集.北京:中国气象学会, 2007.
[21]彭新东, 姜金华. 城市大气污染物扩散模拟系统开发[J]. 高原气象, 2002, 21(2): 139-144.
[22]王雪梅. 广州地区局地环流的数值模拟[J]. 高原气象, 2003, 22(2): 197-201.
[23]刘红年, 胡荣章, 张美根. 城市灰霾数值预报模式的建立与应用[J].环境科学研究, 2009, 22(6): 631-636
[24]胡荣章, 刘红年, 张美根, 等. 南京地区大气灰霾的数值模拟[J].环境科学学报, 2009, 29(4): 808-814.
[25]孙燕, 张备, 严文莲, 等. 南京及周边地区一次严重烟霾天气的分析[J]. 高原气象, 2010, 29(3): 794-800.
[26]Kondo H, Kikegawa Y.Temperature variation in the urban canopy with anthropogenic energy use[J]. Pure and Appl Geophys, 2003, 160(1/2): 317-324.
[27]佟华, 刘辉志, 桑建国, 等. 城市人为热对北京热环境的影响[J]. 气候与环境研究, 2004, 9(3): 409-421.
[28]杨玉华, 徐祥德, 翁永辉. 北京城市边界层热岛的日变化周期模拟[J]. 应用气象学报, 2003, 14(1): 61-67.
[29]杨胜朋, 吕世华, 陈玉春, 等. 人为热源和城市绿化对冬季山谷城市边界层结构影响的数值[J]. 高原气象, 2009, 28(2): 268-277.
[30]Fan Hongli, Sailorb D J.Modeling the impacts of anthropogenic heating on the urban climate of Philadelphia: A comparison of implementations in two PBL schemes[J]. Atmos Environ, 2005, 39(1): 73-84.
[31]Brown M J . Urban parameterizations for mesoscale meteorological models[M]//In: Boybeyi Z. Mesoscale Atmospheric Dispersion Boston: WIT Press, 2000: 193-255.
[32]苗世光, 蒋维楣, 胡非, 等.建筑物分布对市区流场及污染物扩散影响的数值模拟[J].气象科学, 2004, 24(2): 137-144.
[33]刘红年, 苗世光, 蒋维楣, 等.城市建筑动力学效应对对流边界层影响的敏感性试验[J].气象科学, 2008, 28(6): 599-605 .
[34]周幂, 蒋维楣, 徐敏, 等.一个区域PBL模式建立与应用研究[J].南京大学学报(自然科学), 2001, 37(3): 395-400.
[35]Jiang Weimei, Zhou Mi, Xu Min, et al . Study on development and application of a regional PBL numerical model[J].Boundary-Layer Meteor, 2002, 104: 491-503
[36]Miao Shiguang, Jiang Weimei. Large eddy simulation and study of the urban boundary layer[J]. Adv Atmos Sci, 2004, 21 (4): 650-661.
[37]Chen Y, Jiang W M, Zhang N, et al. Numerical simulation of the anthropogenic heat effect on urban boundary layer structure[J]. Theore Appl Climat, 2009, 97(1): 123-134.
[38]Larson S M, Cass G R. Characteristics of summer middy low-visibility events in the Los Angeles area[J]. Environ Sci Tech, 1989, 23: 281.
[39]Chow J C, Bachmann J D. Visibility: Science and regulation[J]. J Air Waste Management Association, 2002, 52(9): 973-999.
[40]王学远, 蒋维楣, 刘红年, 等.南京市重点工业源对城市空气质量影响的数值模拟[J].环境科学研究, 2007, 20(3): 33-43.
[41]胡荣章, 刘红年, 张美根, 等. 南京地区碳气溶胶的数值模拟研究[J]. 中国粉体技术, 2010, 16(1): 68-75.
PDF(1367 KB)

1420

Accesses

0

Citation

Detail

段落导航
相关文章

/