利用NCEP FNL 1°×1°再分析资料和WRF模式, 模拟了2010年1月2~3日我国华北地区的一次由涡旋造成的冬季降雪过程, 并采用位涡和涡度方程对引发暴雪的涡旋发展机制进行了诊断分析。结果表明, 这次降雪过程中, 对流层中层高空浅槽东移\, 加深及发展, 并引导低空和地面系统自西向东移动, 高空位涡的下传强迫加强了对流层中低层涡旋的发展。平均通量和涡旋区域的辐合、 辐散作用对涡旋涡度的增长贡献最大, 扰动通量和类倾斜项的作用较小。在中层涡旋成熟期, 环境场的风速小于中层涡旋的移动速度时, 环境场相对于涡旋区域为辐散, 涡旋涡度减小; 当环境场风速大于涡旋的移动速度时, 环境场相对于涡旋区域为辐合, 涡旋涡度增加。在涡旋衰减期, 向涡旋外输送的绝对涡度通量使得涡旋涡度逐渐减弱。这次过程中, 高空位涡强迫、 低空辐合和涡旋边界平均气流对扰动涡度的输送是涡旋发展的主要机制。
Abstract
The snowstorm occurred in North China on 2~3 January 2010 was simulated using WRF model. And potential vorticity and vorticity equation were used to diagnose the developing mechanism of the vortex producing heavy snowfall process in winter. The results showed that, firstly, the weak trough in middle troposphere leaded to lower and surface systems moving from west to east. Secondly, potential vorticity from upper-level intensified development of vortex in middle-lower troposphere. Thirdly, the mean flux and stretching term of the integrated vorticity equation was the main source of vorticity, but eddy flux and like-tilt term was relatively weak. During the mature period of vortex, the vorticity decreased because of the divergence of environmental circulation to vortex area while the vortex moved faster than surrounding air, and to the contrary, vorticity increased for the convergence between environmental circulation and vortex area. During the dissipating period, the vorticity decreased since the loss of the absolute vorticity flux. On the basis of all diagnosis, the PV forcing inupper-troposphere, convergence inlower-troposphere and the vorticity produced by environmental circulation are main mechanisms of vorticity developing.
关键词
暴雪 /
WRF模式 /
涡度方程 /
位涡
{{custom_keyword}} /
Key words
Snowstorm /
WRF model /
Vorticity equation b /
Potential vorticity
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]Braham R R Jr. The midwest snow storm of 8~11 December 1977[J]. Mon Wea Rev, 1983, 111: 253-272.
[2]Ulbrich U, Fink A H, Klawa M,et al. Three extreme storms over Europe in December 1999[J].Weather, 2001, 56(3): 70-80.
[3]Pearce R, Lioyd D, McConnell D. The post-Christmas ‘French’ storms of 1999[J].Weather, 2001, 56(3): 81-90.
[4]Bosart L F. The Present' Day snowstorm of 18-19 February 1979: A subsynoptic-scale events[J].Mon Wea Rev, 1981, 109: 1542-1566.
[5]Uccellini L, Keyser W D, Brill K F, et al. The Presidents' Day cyclone of 18-19 February 1979: Influence of upstream trough amplification and associated tropopause folding on rapid cyclogenesis[J]. Mon Wea Rev, 1985, 113: 962-988.
[6]Marwitz J D, Toth J. A case study of heavy snowfall in Oklahoma[J].Mon Wea Rev, 1993, 121: 648-661.
[7]Schmidlin T W, Kosarik J. A record Ohio snowfall during 9-14 November 1996[J].Bull Amer Met Soc, 1999, 80(6): 1107-1116.
[8]Onton D J, Steenburgn W J. Diagnostic and sensitivity studies of the 7 December 1998 Great Salt Lake-Effect snowstorm[J].Mon Wea Rev, 2001, 129: 1318-1338.
[9]Shumizu N, Uchida A. An observational study of organized snow echo over the Japan Sea[J].J Meteor Soc, 1974, 52(3): 289-299.
[10]Ninomiya K. Polar low development over the east coast of Asian continent on 9-11 December 1985[J]. J Meteor Soc, 1991, 69(6): 669-685.
[11]张小玲, 程麟生.“96.1”暴雪期中尺度切变线发生发展的动力诊断Ⅰ: 涡度和涡度变率诊断[J]. 高原气象, 2000, 19(3): 285-294.
[12]张小玲, 程麟生.“96.1”暴雪期中尺度切变线发生发展的动力诊断Ⅱ: 散度和散度变率诊断[J].高原气象, 2000, 19(4): 459-466.
[13]王文,程麟生.“96. 1”高原暴雪过程三维条件性对称不稳定的数值研究[J].高原气象, 2002, 21(3): 225-232.
[14]王正旺,苗爱梅,庞转棠,等.山西中南部区域性暴雪天气诊断分析[J].高原气象, 2010, 29(2): 531-538.
[15]周淑玲,朱先德,符长静, 等.山东半岛典型冷涡暴雪个例对流云及风场特征的观测与模拟[J].高原气象, 2009, 28(4): 935-944.
[16]杨成芳, 王俊.利用单多普勒雷达资料做冷流暴雪的中尺度分析[J].高原气象, 2009, 28(5): 1034-1043.
[17]梁军,张胜军,王树雄,等.大连地区一次区域暴雪的特征分析和数值模拟[J].高原气象, 2010, 29(3): 744-754.
[18]黄翠银, 沈新勇, 孙建华, 等.一次由海岸锋引发山东半岛暴雪过程的研究[J].气候与环境研究, 2008, 13(4): 567-583.
[19]王建中, 丁一汇.一次华北强降雪过程的湿对称不稳定性研究[J]. 气象学报, 1995, 53(3): 451-459.
[20]邓远平, 程麟生, 张小玲.三相云显式降水方案和“96.1”暴雪成因的中尺度数值模拟[J]. 高原气象, 2000, 19(4): 401-414.
[21]孙建华, 赵思雄, 华北地区“12.7”降雪过程的数值模拟研究[J].气候与环境研究, 2003, 8(4): 381-395.
[22]Skamarock W C, Weisman M L,Klemp J B. Three-dimensional evolution of simulated long-lived squall lines[J]. J Atmos Sci, 1994, 51: 2563-2584.
[23]Weisman M L, Davis C A. Mechanisms for the generation of mesoscale vortices within quasi-linear convective systems[J]. J Atmos Sci, 1998, 55: 2603-2622.
[24]Bartels D L, Maddox R A. Midlevel cyclonic vortices generated by mesoscale convective systems[J]. Mon Wes Rev, 1991, 119: 104-118.
[25]Davis C A, Trier S B. Cloud-resolving simulations of mesoscale convective vortices[J]. J Atmos Meteor, 2002, 130: 2839-2858.
[26]Davis C A, Galarenau T J. The vertical structure of mesoscale convective vortices[J]. Mon Wea Rev, 2008, 66: 686 -704.
[27]Conzenimus R J, Montgomery M T. Clarification on the generation of absolute and potential vorticity in mesoscale convective vortices[J]. Atmos Chem Phys, 2009, 9: 7591-7605.
[28]Sun J H,Zhao S X, Xu G K, et al. Study on a mesoscale convective vortex causing heavy rainfall during the Meiyu season in 2003[J]. Adv Atmos Sci, 2010, 27(5): 1193-1209.