西北中部半干旱区兴隆山森林岛降水机理的数值模拟

陈磊;田文寿;黄倩;黄建平;王婵;孙兰东

PDF(2181 KB)
高原气象 ›› 2012, Vol. 31 ›› Issue (4) : 885-899.
论文

西北中部半干旱区兴隆山森林岛降水机理的数值模拟

  • 陈磊;田文寿;黄倩;黄建平;王婵;孙兰东
作者信息 +

Numerical Simulation of Precipitation Mechanisms for an Isolated Forest Mountain Area in Semi-Arid Region of Middle of Northwest China

  • CHEN Lei-;TIAN Wen-Shou-;HUANG Qian-;HUANG Jian-Ping-;WANG Chan-;SUN Lan-Dong-
Author information +
History +

摘要

通过WRF V2.1.2模式数值模拟试验并结合长期观测数据, 研究了中国西北半干旱区长期存在和维持的森林山区(兴隆山区, 103.84°E、 35.86°N)的降水特征及其与周边地区的降水差异, 并探讨了造成这种差异的主要原因。结果表明, 兴隆山区与周边地区的降水差异主要表现在夏、 秋季。在夏、 秋季兴隆山区受东南湿润气流的影响, 获得较多的水汽输入和较稳定的水汽来源, 而山地地形则有利于截留东南气流携带的水汽并形成降水; 兴隆山区及其周边地区局地的蒸散差异对二者之间降水差异的贡献不大。另外, 兴隆山区土壤堆积覆盖的石质山构造和森林下垫面也有利于降水的截留和贮存以及植被的生长。因此, 有利于水汽输入的大尺度环流形势、 地形对空中水汽的截留以及特殊的地质因素是兴隆山山区孤立森林岛在半干旱区长期存在和维持的原因。

Abstract

Using a numerical model and the long term observation data, the precipitation differences between an isolated mountain forest (Xinglong, 103.84°E, 35.86°N) and its surrounding area over the arid/semi-arid region of Northwest China is studied in order to understand the mechanisms for the persistence of the isolated forest. The results indicate that the precipitation differences between Xinglong Mountain and its surrounding area are the largest in summer and autumn. The Xinglong Mountain area is dominated by the southeastern wet flow in summer and autumn and consequently a stable water vapor source. In addition, the meso-scale high mountainous terrain blocks the water vapor from the southeastern flow and enhances precipitation. The contribution of local evapotranspiration to the precipitation is less than that of advection effects of water vapor. On the other hand, the rock tectonics of Xinglong Mountain covered by soil and forest also help to hold and store water for the growth of plants. Therefore, the persistence of the forest island   of Xinglong Mountain in semi-arid regions is the consequence of the large-scale circulation, which transports more water vapor, the orography and the special geology which tend to help and store more water vapor for this area.

关键词

地形降水 / 局地蒸散 / 环流输送 / 数值模拟

Key words

Orographic precipita / Local evapotranspira / Circulation transpor / Numerical simulation

引用本文

导出引用
陈磊;田文寿;黄倩;黄建平;王婵;孙兰东. 西北中部半干旱区兴隆山森林岛降水机理的数值模拟. 高原气象. 2012, 31(4): 885-899
陈磊;田文寿;黄倩;黄建平;王婵;孙兰东. Numerical Simulation of Precipitation Mechanisms for an Isolated Forest Mountain Area in Semi-Arid Region of Middle of Northwest China. Plateau Meteorology. 2012, 31(4): 885-899

参考文献

[1]张秋玲, 马金辉, 赵传燕.兴隆山地区景观格局变化及驱动因子[J].生态学报, 2007, 27(8): 3206-3214.
[2]Smith R B. The influence of mountains on the atmosphere[J]. Adv Geophys, 1979, 29: 87-230.
[3]BougeaultP, Binder P, Buzzi A, et al.The MAP special observing period[J]. Bull Amer Meteor Soc, 2001, 82(3): 433-462.
[4]Bousquet O, SmullB F. Observations and impacts of upstream blocking during a widespread orographic precipitation event[J]. Quart J Roy Meteor Soc, 2003, 129: 391-409.
[5]RotunnoR, Ferretti R. Orographic effects on rainfall in MAP cases IOP 2b and IOP 8[J]. Quart J Roy Meteor Soc, 2003, 129:373-390.
[6]Francois G,Stein J. Small-scale rainfall mechanisms for an idealized convective southerly flow over the Alps[J]. Quart J Roy Meteor Soc, 2003, 129:1819-1840.
[7]Rotunno R,Houze R A. Lessons on orographic precipitation from the Mesoscale Alpine Programme[J]. Quart J Roy Meteor Soc, 2007, 133:1-999.
[8]钱正安, 吴统文, 吕世华, 等.夏季西北干旱气候形成的数值模拟—高原地形和环流场等的影响[J].大气科学, 1998, 22(5): 753-762.
[9]刘新, 李伟平, 许晃雄, 等.青藏高原加热对东亚地区夏季降水的影响[J]. 高原气象, 2007, 26(6): 1287-1292.
[10]朱素行, 徐海明, 徐蜜蜜. 亚洲夏季风区中尺度地形降水结构及分布特征[J].大气科学, 2010, 34(1): 71-82.
[11]李子良. 地形降水试验和背风回流降水机制[J].气象, 2006, 32(5): 10-15.
[12]MigliettaM M, Buzzi A. A numerical study of moist stratified flow regimes over isolated topography[J]. Quart J Roy Meteor Soc, 2004, 130: 1749-1770.
[13]Chen SH, Lin Y L. Effects of moist Froude number and CAPE on a conditionally unstable flow over amesoscale mountain ridge[J]. J Atmos Sci, 2005, 62: 331-350.
[14]JiangQ, Smith R B. Cloud timescales and orographic precipitation[J]. J Atmos Sci, 2003, 60: 1543-1559.
[15]JiangQ. Moist dynamic and orographic pecipitation[J]. Tellus, 2003, 55: 301-316.
[16]SmithR B, Barstad I. A linear theory of orographic precipitation[J]. J Atmos Sci, 2004, 61: 1377-1391.
[17]Smith R B. A linear upslope-time-delay model for orographic precipitation[J].J Hydro, 2003,282: 2-9.
[18]姜勇强, 王元. 地形对1998年7月鄂东特大暴雨鞍型场的影响[J]. 高原气象, 2010, 29(2): 297-308.
[19]Kessler E. On the distribution and continuity of water substance in atmospheric circulation[J]. Meteor Monographs,1969, 32: 84.
[20]Mlawer E J, Taubman S J, Brown P D, et al. Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave[J].J Geophys Res, 1997, 102( D14): 16663-16682.
[21]Dudia J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model[J]. J Atmos Sci, 1997, 46: 3077-3107.
[22]Chen F, DudiaJ. Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system. Part I: Model description and implementation[J]. Mon Wea Rev, 2001, 129: 569-585.
[23]Noh Y, Cheon W G, Hong S Y, et al.Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data[J]. Bound-Layer Meteor, 2003, 107: 401-427.
[24]Kain J S, FritschJ M.A one-dimensional entraining/detraining plume model and its application in convective parameterization[J]. J Atmos Sci, 1990, 47: 2784-2802.
[25]Hunt J C R. Wind over hills[C]//Wyngaard J C ed. Workshop on the Planetary Boundary Layer. Boston: American Meteorological Society, 1980: 107-144.
[26]李志强, 刘谦和, 宋宝健, 等.兴隆山地貌特征及地貌类型划分[J]. 甘肃农业大学学报, 1990, 25(3): 303-312.
[27]Yatagai Akiyo, Yasunari T. Variation of summer water vapor transport related to precipitaion over and around the arid region in the interior of the Eurasian Continent[J]. J Meteor Soc Japan, 1998, 76(5): 799-815.
[28]王遂缠, 李栋梁, 王谦谦. 青藏高原东北侧夏季降水的气候特征分析[J]. 干旱气象, 2005, 23(2): 13-18.
[29]奥银焕, 吕世华, 陈世强, 等.夏季金塔绿洲及邻近戈壁的冷湿舌及边界层特征分析[J]. 高原气象, 2005, 24(2): 503-508.
[30]阎宇平, 王介民, MenentiM, 等.黑河地区绿洲—沙漠环流的数值模拟研究[J]. 高原气象, 2001, 20(4): 435-440.
[31]刘树华, 胡予, 胡非, 等.沙漠-绿洲陆-气相互作用和绿洲效应的数值模拟[J]. 地球物理学报, 2005, 48(5): 1019-1027.
[32]文小航, 吕世华, 孟宪红, 等. WRF模式对金塔绿洲效应的数值模拟[J]. 高原气象, 2010, 29(5): 1163-1173.
[33]韩博, 吕世华, 奥银焕. 金塔绿洲土壤中蒸发/凝结过程的初步分析[J]. 高原气象, 2011, 30(6): 1462-1471.
[34]Gao Y H, Chen Y C, Lv S H. Numerical simulation of the critical scale of oasis maintenance and development in the arid region of northwest China[J]. Adv Atmos Sci, 2004, 21(1): 113-124.
[35]陈玉春, 吕世华, 高艳红.不同尺度绿洲环流和边界层特征的数值模拟[J].高原气象, 2004, 23(2): 177-183.
[36]刘树华, 胡予, 胡非, 等.绿洲效应的模拟及内外因子得敏感性实验[J].大气科学, 2005, 29(6): 997-1009.
[37]吕世华,罗斯琼.沙漠-绿洲大气边界层结构的数值模拟[J].高原气象, 2005, 24(4): 465-470.
PDF(2181 KB)

1526

Accesses

0

Citation

Detail

段落导航
相关文章

/