CLM3.5模式对青藏高原玛曲站陆面过程的数值模拟研究

陈渤黎-;吕世华;罗斯琼

PDF(1420 KB)
高原气象 ›› 2012, Vol. 31 ›› Issue (6) : 1511-1522.
论文

CLM3.5模式对青藏高原玛曲站陆面过程的数值模拟研究

  • 陈渤黎-;吕世华;罗斯琼
作者信息 +

Simulation Analysis on Land Surface Process at Maqu Station in the Qinghai-Xizang Plateau Using Community Land Model

  • CHEN Bo-li-;L Shi-hua;LUO Si-qiong
Author information +
History +

摘要

利用通用陆面过程模式(CLM3.5)和青藏高原玛曲站2010年6月-2011年2月的观测资料进行了9个月的单点数值模拟试验。通过比较辐射通量、 能量通量、 土壤温度及土壤含水量的模拟值和观测值, 结果表明, CLM3.5模式能较成功地模拟玛曲地区的陆面能量与水分特征。该模式对夏季向上短波辐射的模拟较好, 冬季整体偏小。向上长波辐射的模拟整体较好, 但模拟值稍偏大。净辐射的模拟整体较好, 模拟值与观测值的相关系数为0.99, 偏差为-1.28 W·m-2。感热通量的模拟较差, 整体显著偏高。潜热通量的模拟较好, 随季节变化特征明显。土壤热通量的模拟夏季较好, 冬季土壤冻结及消融期的偏差较大, 主要原因与冬季模拟的积雪偏少有关。土壤温度的模拟夏季较好、 冬季较差, 6层土壤温度模拟值与观测值的相关系数均在0.98以上, 平均偏差为-1.80 ℃。模式较好地模拟出了冬季土壤冻结后存留的未冻水, 冻结后土壤含水量的模拟较该模式以前的版本有了很大的改善, 6层土壤含水量模拟值与观测值的平均相关系数为0.94, 平均偏差为-0.015 m3·m-3

Abstract

Using the Community Land Model version 3.5 of NCAR (CLM3.5) and the observed data atMaqu station in the Qinghai-XizangPlateau during June 2010 to February 2011, a single point simulation experiment has been done. The comparison of the simulated and observed physical variables such as radiationfluxes, energy flux, soil temperature and soil moisture proved that the model simulated the land surface process successfully. The simulation of the upward short wave radiation in summer is better, but bias occurs during winter. The simulation of the upward long wave radiation is good but the result is a little higher. The simulation of the net radiation is also good, the correlation coefficient of the observed value and the simulated value is 0.99 and the bias is -1.28 W·m-2. The  simulated result of the sensible heat flux is higher than the observed value in total while the simulation of the latent heat flux is good enough. The simulation of the soil heat flux is better in summer but worse in winter. A shallower of the simulated snow depth may lead to the bias. The comparison of the simulated and observed soil temperature showed that the result in summer is better than that in winter. The correlation coefficients of the six soil layers are all above 0.98, and the mean bias is -1.80 ℃. The  simulated the unfrozen water is successfully when the soil is frozen, which is a big improvement in soil moisture simulation comparing with the previous version of the CLM model. The mean correlation coefficient of the six soil layers is 0.94, and the mean bias is -0.015 m3·m-3.

关键词

?青藏高原 / 陆面过程 / 土壤冻融 / CLM3.5模式

Key words

Qinghai-Xizang Plate / Land surface process / Soil freezing and th / CLM3.5 model

引用本文

导出引用
陈渤黎-;吕世华;罗斯琼. CLM3.5模式对青藏高原玛曲站陆面过程的数值模拟研究. 高原气象. 2012, 31(6): 1511-1522
陈渤黎-;吕世华;罗斯琼. Simulation Analysis on Land Surface Process at Maqu Station in the Qinghai-Xizang Plateau Using Community Land Model. Plateau Meteorology. 2012, 31(6): 1511-1522

参考文献

[1]刘新, 李伟平, 许晃雄, 等. 青藏高原加热对东亚地区夏季降水的影响[J]. 高原气象, 2007, 26(6): 1287-1292.
[2]钱永甫, 张艳, 郑益群. 青藏高原冬春季积雪异常对中国春夏季降水的影响[J]. 干旱气象, 2003, 21(3): 1-7.
[3]赵声蓉, 宋正山, 纪立人. 青藏高原热力异常与华北汛期降水关系的研究[J]. 大气科学, 2003, 27(5): 881-893.
[4]陈兴芳, 宋文玲. 冬季高原积雪和欧亚积雪对我国夏季旱涝不同影响关系的环流特征分析[J]. 大气科学, 2000, 24(5): 585-592.
[5]马耀明, 姚檀栋, 王介民. 青藏高原能量和水循环试验研究[J]. 高原气象, 2006, 25(2): 344-351.
[6]马耀明, 仲雷, 田辉, 等. 青藏高原非均匀地表区域能量通量的研究[J]. 遥感学报, 2006, 10(4): 542-547.
[7]马耀明, 姚檀栋, 王介民, 等. 青藏高原复杂地表能量通量研究[J]. 地球科学进展, 2006, 21(12): 1215-1223.
[8]马耀明, 刘东升, 苏中波, 等. 卫星遥感藏北高原非均匀陆表地表特征参数和植被参数[J]. 大气科学, 2004, 28(1): 23-31.
[9]孙菽芬, 金继明. 陆面过程模式研究中的几个问题[J]. 应用气象学报, 1997, 8(增刊): 50-57.
[10]罗斯琼, 吕世华, 张宇, 等. CoLM 模式对青藏高原中部 BJ 站陆面过程的数值模拟[J]. 高原气象, 2008, 27(2): 259-271.
[11]陈海山, 孙照渤. 青藏高原单点地气交换过程的模拟试验[J]. 高原气象, 2005, 24(1): 9-15.
[12]辛羽飞, 卞林根, 张雪红. CoLM 模式在西北干旱区和青藏高原区的适用性研究[J]. 高原气象, 2006, 25(4): 567-574.
[13]徐学祖, 王家澄, 张立新. 冻土物理学[M]. 北京: 科学出版社, 2001.
[14]王澄海, 师锐. 青藏高原西部陆面过程特征的模拟分析[J]. 冰川冻土, 2007, 29(1): 73-81.
[15]王澄海, 师锐, 左洪超. 青藏高原西部冻融期陆面过程的模拟分析[J]. 高原气象, 2008, 27(2): 239-248.
[16]Luo S, Lü S, Zhang Y. Development and validation of the frozen soil parameterization scheme in Common Land Model[J]. Cold Regions Science and Technology, 2009, 55(1): 130-140.
[17]李震坤, 武炳义, 朱伟军, 等. CLM3.0模式中冻土过程参数化的改进及模拟试验[J]. 气候与环境研究, 2011, 16(2): 137-148.
[18]Niu G Y, Yang Z L. Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale[J]. J Hydrometeor, 2006, 7(5): 937-952.
[19]Oleson K W, Niu G Y, Yang Z L, et al. CLM3. 5 Documentation[Z]. Nation Center for Atmospheric Research, Bollder, USA, 2007.
[20]杜川利, 刘晓东. 公用陆面模式(Community Land Model 3.0)简介[J]. 陕西气象, 2005(6): 13-14.
[21]Oleson K W, Dai Y, Bonan G, et al. Technical description of the community land model (CLM)[R]. NCAR Tech. Note TN-461+ STR, 2004: 174.
[22]Vertenstein M, Oleson K, Levis S, et al. Community Land Model version 3.0 (CLM3. 0) user's guide[Z]. National Center for Atmospheric Research, Boulder, USA, 2004.
[23]Niu G Y, Yang Z L. An observation-based formulation of snow cover fraction and its evaluation over large North American river basins[J]. J Geophys Res, 2007, 112: D21101.
[24]郭东林, 杨梅学, 李敏, 等. 青藏高原中部季节冻土区地表能量通量的模拟分析[J]. 高原气象, 2009, 28(5): 978-987.
[25]罗斯琼, 吕世华, 张宇, 等. 青藏高原中部土壤热传导率参数化方案的确立及在数值模式中的应用[J]. 地球物理学报, 2009, 52(4): 919-928.
PDF(1420 KB)

1095

Accesses

0

Citation

Detail

段落导航
相关文章

/