Please wait a minute...
高级检索
高原气象  2011, Vol. 30 Issue (6): 1462-1471    
论文     
金塔绿洲土壤中蒸发/凝结过程的初步分析
中国科学院寒旱区陆面过程与气候变化重点实验室, 中国科学院 寒区旱区环境与工程研究所, 甘肃 兰州730000
Preliminary Analysis on Evaporation/Condensation
Processes of Soil in Jinta Oasis
 全文: PDF(1040 KB)  
摘要: 用2005年6月27日~7月4日金塔绿洲地表及0.40 m土壤温度观测资料作为边界条件, 结合一维土壤热传导方程计算了该时段0.05, 0.10和0.20 m深处的土壤温度。通过比较同时段观测值与计算值的观测, 发现0.05 m深处的土壤温度计算值与观测值的差异最大。结果表明, 在方程中只需简单考虑浅层土壤蒸发/凝结过程, 便可以使模拟结果得到显著改善。金塔绿洲地表能量通量分析表明, 08:00~12:00浅层土壤有虚假的热储项; 而在12:00~16:00则有偏大的地表潜热通量。这些能量不闭合现象可部分归结为在观测时未充分考虑绿洲浅层土壤蒸发/凝结过程。
关键词: 金塔绿洲热传导方程蒸发/凝结过程地表能量平衡土壤热储    
Abstract: Using the surface and 0.40 m depth soil temperature in Jinta oasis as boundary condition, the temperatures at 0.05, 0.10 and 0.20 m depthes were calculated by a one dimensional soil thermal diffusion equation. Comparing with the calculated and observed results on these three levels, it was found that the most significant difference between them appeared at 0.05 m level. Then, based on the characteristic of soil water content variability, evaporation and condensation (EC) processes were considered by improving the former thermal diffusion equation, and more realistic results were obtained, which means the EC processes might be important for hydrothermal variability of soil in Jinta oasis. The affection of EC on the surface energy balance were analyzed based on the observation of energy flux in the local surface. Two phenomena were found: Firstly, from 08:00 to 12:00, the shallow soil heat storage was not totally caused by the net radiation, but partly by the vapor condensation there; secondly, the latent heat flux was abnormally large from 12:00 to 16:00, made the surface energy flux unbalanced at that time, which can be explained as the vapor flux from deep soil being wrongly involved into the vapor flux of surface.
Key words: Jinta oasis    Thermal diffusive equation    Evaporation/condensation processes    Surface
energy balance
   Soil heat storage
出版日期: 2011-12-25
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
韩博
吕世华
奥银焕

引用本文:

韩博, 吕世华, 奥银焕. 金塔绿洲土壤中蒸发/凝结过程的初步分析[J]. 高原气象, 2011, 30(6): 1462-1471.

HAN Bo, 吕Shi-Hua , AO Yin-Huan. Preliminary Analysis on Evaporation/Condensation
Processes of Soil in Jinta Oasis. PLATEAU METEOROLOGY, 2011, 30(6): 1462-1471.

链接本文:

http://www.gyqx.ac.cn/CN/        http://www.gyqx.ac.cn/CN/Y2011/V30/I6/1462

[1]Mahrt L, Vickers D. Boundary-layer adjustment over small-scale changes of surface heat flux[J]. Boundary-Layer Meteor, 2005, 116(2): 313-330.

[2]Michael E K, Richard H C. Variation in soil parameters: Implications for modeling surface fluxes and atmospheric boundary-layer development[J]. Boundary-Layer Meteor, 1994, 70(4): 369-383.

[3]Kristovich D A R, Braham R R. Mean profiles of moisture fluxes in snow-filled boundary layers[J]. Boundary-Layer Meteor, 1998, 87(2): 195-215.

[4]Oncley S P, Foken T, Vogt R, et al. The energy balance experiment EBEX-2000.Part I: Overview and energy balance[J]. Boundary-Layer Meteor, 2007, 123(1): 1-28.

[5]Trenberth K E, Caron J M, Stepaniak D P. The atmospheric energy budget and implications for surface fluxes and ocean heat transports[J]. Climate Dynam, 2001, 17(4): 259-276.

[6]Watterson I G, Dix M R. Influences on surface energy fluxes in simulated present and doubled CO2 climates[J]. Climate Dynam, 1996, 12(5): 359-370.

[7]ZHU Chunmei,  Lettenmaier D P. Long-term climate and derived surface hydrology and energy flux data for mexico: 1925 2004[J]. J Climate, 2007, 20(9): 1936-1946.

[8]Hammerle A, Haslwanter A, Schmitt M, et al. Eddy covariance measurements of carbon dioxide, latent and sensible energy fluxes above a meadow on a mountain slope[J]. Boundary-Layer Meteor, 2007, 122(2): 397-416.

[9]Bernhofer C. Applying a simple three-dimensional eddy correlation system for latent and sensible heat flux to contrasting forest canopies[J]. Theor Appl Climatol, 1992, 46(2/3): 163-172.

[10] Culf A D, Foken T, Gash J H C . Vegetation, Water, Humans and the Climate-A New Perspective on an Interactive System [M]. Hamburg: Springer Verlag, 2004: 159-166.

[11] Heusinkveld B G, Jacobs A F G, Holtslag A A M, et al. Surface energy balance closure in an arid region: Role of soil heat flux[J]. Agric For Meteor, 2004,122(1/2): 21-37.

[12] Jacobs A F G, Heusinkveld B G, Holtslag A A M. Towards closing the surface budget of a mid-latitude grassland[J]. Boundary-Layer Meteor, 2008,126(1): 125-136.

[13] Anderson D E, Verma S B, Rosenberg N J. Eddy correlation measurements of CO2, latent heat, and sensible heat fluxes over a crop surface[J]. Boundary-Layer Meteor, 1984, 29(3): 263-272.

[14] YANG Kun, WANG Jiemin. A temperature prediction-correction method for estimating surface soil heat flux from soil temperature and moisture data[J]. Sci China Ser D: Earth Sci, 2008, 51(5): 721-729.

[15] Weber S, Graf A, Heusinkveld B G. Accuracy of soil heat flux plate measurements in coarse substrates-Field measurements versus a laboratory test[J]. Theor Appl Climatol, 2007, 89(1/2): 109-114.

[16] Gao Zhiqiu, Fan Xingang, Bian Lingen. Analytical Solution to one-dimensional thermal conduction-convection in soil[J]. Soil Sci, 2003, 168(2): 99-106.

[17] Gao Zhiqiu. Determination of soil heat flux in a Tibetan short-grass prairie[J]. Boundary-Layer Meteor, 2005, 114(1): 165-178.

[18] Ren D, Leslie L M, Karoly D J. Sensitivity of an ecological model to soil moisture simulations from two different hydrological models[J]. Meteor Atmos Phys, 2008, 100(1/4): 87-99.

[19] Warrach K, Mengelkamp H T, Raschke T. Treatment of frozen soil and snow cover in the land surface model SEWAB[J]. Theor Appl Climatol, 2001, 69(1/2): 23-37.

[20] Shao Yaping,  Irannejad P. On the choice of soil hydraulic models in land-surface schemes[J]. Boundary-Layer Meteor, 1999, 90(1): 83-115.

[21] Yang Kun, Koike T, Ye B, et al. Inverse analysis of the role of soil vertical heterogeneity in controlling surface soil state and energy partition[J]. J Geophys Res, 2005, 110, D08101, doi:10.1029/2004JD005500.

[22] Olivella S, Gens A. Vapour transport in low permeability unsaturated soils with capillary effects[J]. Transport Porous Med, 2000, 40(2): 219-241.

[23] Poutou E, Krinner G, Genthon C, et al. Role of soil freezing in future boreal climate change[J]. Clim Dynam, 2004, 23(6): 621-639. 

[24] Li Qian, Sun ShuFen. Development of the universal and simplified soil model coupling heat and water transport[J]. Sci China Ser D: Earth Sci, 2008, 51(1): 88-102.

[25] Hu Heping, Ye Baisheng, Zhou Yuhua, et al. A land surface model incorporated with soil freeze/thaw and its application in GAME/Tibet[J]. Sci China Ser D: Earth Sci, 2006, 49(12): 1311-1322.

[26] Harlan R L. Analysis of coupled heat-fluid transport in partially frozen soil[J]. Water Resour Res, 1973, 9(5): 1314-1323.

[27] Garratt J R, Segal M. On the contribution of atmospheric moisture to dew formation[J]. Boundary-Layer Meteor, 1988, 45(3): 209-236.

[28] Jacobs A F G, Pul A, El-Kilani R M M. Dew formation and the drying process within a maize canopy[J]. Boundary-Layer Meteor, 1994, 69(4): 367-378.

[29] Barradas V L, Glez-Medellín M G. Dew and its effect on two heliophile understorey species of a tropical dry deciduous forest in Mexico[J]. Int J Biometeor, 1999, 43(1): 1-7.

[30] Luo Weihong, Goudriaan J. Measuring dew formation and its threshold value for net radiation loss on top leaves in a paddy rice crop by using the dewball: A new and simple instrument[J]. Int J Biometeor, 2000, 44(4): 167-171.

[31] Wang J, Yasushi M. Evaporation from desert: some preliminary results of HEIFE[J]. Boundary-Layer Meteor, 1992, 59(4): 413-418.

[32] Wang J, Ma Y, Menenti M, et al. The scaling-up of processes in the heterogeneous landscape of HEIFE with the aid of satellite remote sensing: HEIFE[J]. J Meteor Soc Japan, 1995, 73(6): 1235-1244.

[33] Mitsuta Y, Hayashi T, Takemi T, et al. Two severe local storms as observed in the arid area of Northwest China: HEIFE[J]. J Meteor Soc Japan, 1995, 73(6): 1269-1284.

[34] Tamagawa I. Turbulent characteristics and bulk transfer coefficients over the desert in the HEIFE area[J]. Boundary-Layer Meter, 1996, 77(7): 1-20.

[35] 孙菽芬, 牛国跃, 洪钟祥. 干旱及半干旱区土壤水热传输模式研究[J]. 大气科学, 1998, 22(1): 1-10.

[36] 谢忠奎, 王亚军, 兰念军, 等. 黑河地区土壤及小麦体内水分动态观测分析[J]. 高原气象, 2000, 19(3): 385-390.

[37] 康尔泗, 程国栋, 宋克超, 等. 河西走廊黑河山区土壤—植被—大气系统能水平衡模拟研究[J]. 中国科学(D辑), 2004, 34(6): 544-551.

[38] 张宇, 吕世华, 陈世强, 等. 绿洲边缘夏季小气候特征及地表辐射与能量平衡分析[J].高原气象, 2005, 24( 4): 527-533.

[39] 姜金华, 胡非, 角媛梅. 黑河绿洲区不均匀下垫面大气边界层结构的大涡模拟研究[J]. 高原气象, 2005, 24(6): 857-864.

[40] 吴锦奎, 丁永建, 魏智, 等. 黑河中游间作农田的辐射收支特征分析[J]. 高原气象, 2007, 26(2): 286-292.

[41] 高艳红, 程国栋, 刘伟, 等. 黑河流域土壤参数修正及其对大气要素模拟的影响[J]. 高原气象, 2007, 26(5): 958-966.

[42] 王维真, 徐自为, 刘绍民, 等. 黑河流域不同下垫面水热通量特征分析[J]. 地球科学进展, 2009, 24(7): 714-723.

[43] 孙菽芬. 陆面过程的物理、 生化机理和参数化模型[M]. 北京: 气象出版社, 2005: 1-307.

[44] 王少影, 张宇, 吕世华, 等. 金塔绿洲湍流资料的质量控制[J]. 高原气象, 2009, 28(6): 1260-1273.

[45] 王少影, 张宇, 吕世华, 等. 应用通量方差法估算戈壁绿洲下垫面湍流通量的研究[J]. 大气科学, 2010, 34(6): 1214-1222.

[46] 徐自为, 刘绍民, 宫丽娟, 等. 涡动相关仪观测数据的处理与质量评价研究[J]. 地球科学进展, 2008, 23(4): 357-370.

[47] Webb E K, Pearman G I, Leuning R. Correction of flux measurements for density effects due to heat and water vapor transfer[J]. Quart J Roy Meteor Soc, 1980, 106: 85-100.

[48] Garratt J R. The Atmospheric Boundary Layer[M]. Cambridge: Cambridge University Press, 1992: 1- 316.

[49] Foken T. The energy balance closure problem: An overview[J]. Ecol Appl, 2008, 18(6): 1351-1367.

[50] Liu S M, Xu Z W, Wang W Z, et al. A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem[J]. Hydrol Earth Syst Sci, 2011, 15: 1291-2011.

[51] Han B, Lu S, Ao Y. Analysis on the interaction between turbulence and secondary circulation of the surface layer at Jinta oasis in summer[J]. Adv Atm Sci, 2010, 27(3): 605-625.
[1] 胡媛媛, 仲雷, 马耀明, 邹宓君, 黄子煜, 徐可飘, 冯璐. 青藏高原典型下垫面地表能量通量的模型估算与验证[J]. 高原气象, 2018, 37(6): 1499-1510.
[2] 张珊, 张宇, 王少影, 尚伦宇, 苏有琦. 金塔绿洲农田下垫面温湿度的非相似性分析[J]. 高原气象, 2016, 35(3): 633-642.
[3] 何建军1-2,余晔1*,陈晋北1,刘娜1-2,赵素平1-2. 植被覆盖度对兰州地区气象场影响的模拟研究[J]. 高原气象, 2012, 31(6): 1611-1621.
[4] 孟宪红, 吕世华. 卫星遥感结合数值模式估算金塔绿洲
非均匀地表能量通量
[J]. 高原气象, 2012, 31(4): 910-919.
[5] 赵林-;陈玉春;吕世华;孟宪红;李万莉-;李江林-. 金塔绿洲解放村水库夏季晴天水文气象效应的数值模拟[J]. 高原气象, 2010, 29(6): 1414-1422.
[6] 文小航;吕世华;孟宪红;文莉娟-;李万莉;马迪. WRF模式对金塔绿洲效应的数值模拟[J]. 高原气象, 2010, 29(5): 1163-1173.
[7] 李宏宇-;张强;;;赵建华;;王胜;;史晋森. 陇中黄土高原地表能量不平衡特征及其影响机制研究[J]. 高原气象, 2010, 29(5): 1153-1162.
[8] 王少影-;张宇;吕世华;奥银焕;李锁锁;陈世强. 金塔绿洲湍流资料的质量控制研究[J]. 高原气象, 2009, 28(6): 1260-1273.
[9] 马迪-;吕世华;陈世强;罗斯琼;权晓晶. 夏季金塔绿洲近地层通量足迹及源区分布特征分析[J]. 高原气象, 2009, 28(1): 28-35.
[10] 韩博;吕世华;奥银焕. 西北戈壁区夏季一次降水前后土壤温度变化规律分析[J]. 高原气象, 2009, 28(1): 36-45.
[11] 李国平, 张泽铭, 刘晓冉. 青藏高原西部土壤热量的传输及其参数化方案[J]. 高原气象, 2008, 27(4): 719-726.
[12] 陈世强, 文莉娟, 吕世华, 奥银焕, 张宇, 李锁锁. 夏季金塔地区绿洲环流的数值模拟[J]. 高原气象, 2006, 25(1): 66-73.
[13] 韦志刚, 吕世华, 胡泽勇, 张宇, 陈世强, 李振朝, 奥银焕, 李锁锁, 张拥军, 谷良雷 . 夏季金塔边界层风、温度和湿度结构特征的初步分析 [J]. 高原气象, 2005, 24(6): 846-856.
[14] 文莉娟, 吕世华, 陈世强, 孟宪红, 鲍艳 . 夏季金塔绿洲冷岛效应的数值模拟 [J]. 高原气象, 2005, 24(6): 865-871.
[15] 孟宪红, 吕世华, 张宇, 张堂堂 . 使用LANDSAT-5TM数据反演金塔地表温度 [J]. 高原气象, 2005, 24(5): 721-726.
img

QQ群聊

img

官方微信