Please wait a minute...
高级检索
高原气象  2011, Vol. 30 Issue (6): 1566-1572    
论文     
北极臭氧损耗对初春东亚中高纬地区地面气温影响的观测分析
北京大学 物理学院大气与海洋科学系, 气候与海-气实验室, 北京100871
Observation Analysis on Impact of Arctic Ozone Depletion
on Surface Air Temperature in Middle and High Latitudes
of East Asia during Springtime
 全文: PDF(832 KB)  
摘要: 利用1948—2007年NCEP/NCAR月平均2 m地面气温再分析资料、 3月北极涛动(AO)指数和春季臭氧含量资料, 采用合成分析方法分析了北极臭氧损耗对初春东亚中高纬地区地面气温的影响。结果表明, 臭氧低(高)值年, 3月东亚中高纬地区地面气温存在正(负)异常。4月的与3月类似, 但气温异常的幅度减小, 中心位置也有所变化。对比分析表明, 1979年以后的AO正位相和臭氧损耗对3月东亚地面气温的影响类似, 但在影响范围和中心位置上有所不同。在AO位相不明显的年份, 臭氧损耗年3月东亚地区地面气温的异常依然显著。臭氧作为一个外界强迫因子, 对北半球大气温度有显著的影响, 可能首先影响极地气温并最终通过空间上的自相关影响中高纬度的地面气温变化。
关键词: 北极臭氧损耗北极涛动地面气温    
Abstract: Using the  composited analysis method, the impact of Arctic ozone depletion on surface air temperature in middle and high latitudes of the East Asia during springtime is studied. It is found that, in the low (high) ozone years, the positive (negative) temperature anomaly occur in middle and high latitudes of East Asia in March. Similar to March, the anomaly still exist in April, but with small amplitude and shrinked range. Comparing with these results, the composition of the years of lower and higher AO indexes appear to be similar on amplitude, its center location is different. In the weaker years from the AO phase, those anomalies are still significant. So  ozone as an eternal forcing, it has a significant impact on the temperature of Northern Hemisphere, it might first effects on the Arctic region, and then effects the region of middle and high latitudes by self-correlation in space.
Key words: Arctic ozone depletion    Arctic Oscillation    Surface air temperature
出版日期: 2011-12-25
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
石柳
郑明华
付遵涛

引用本文:

石柳, 郑明华, 付遵涛. 北极臭氧损耗对初春东亚中高纬地区地面气温影响的观测分析[J]. 高原气象, 2011, 30(6): 1566-1572.

SHI Liu, ZHENG Ming-Hua, FU Zun-Tao. Observation Analysis on Impact of Arctic Ozone Depletion
on Surface Air Temperature in Middle and High Latitudes
of East Asia during Springtime. PLATEAU METEOROLOGY, 2011, 30(6): 1566-1572.

链接本文:

http://www.gyqx.ac.cn/CN/        http://www.gyqx.ac.cn/CN/Y2011/V30/I6/1566

[1]赵春生, 秦瑜. 大气化学基础[M]. 北京: 气象出版社, 2003.

[2]Richard Stolarski, Rumen Bojkov, Lane Bishop, et al. Measured trends in stratospheric ozone[J]. Science, 1992, 256(5055): 342-349.

[3]Solomon S. Stratospheric ozone depletion: A review of concepts and history[J]. Rev Geophys, 1999, 37(3): 275-316.

[4]Andrews D G, Holton J R,Leovy C B.Middle Atmosphere Dynamics[M]. Academic, San Diego, Calif., 1987.

[5]Farman J C, Gardiner B G, Shanklin J D. Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction[J]. Nature, 1985, 315: 207-210.

[6]Randel W J, Cobb J B. Coherent variations of monthly mean total ozone and lower stratosphere temperature[J]. J Geophys Res, 1994, 99(D3): 5433-5447.

[7]Ramaswamy V, Schwarzkopf M D, Randel W J. Fingerprint of ozone depletion in the spatial and temporal pattern of recent lower stratospheric cooling[J]. Nature, 1996, 382: 616-618.

[8]Folland C K, Karl T R, Vinnikov K Y. The IPCC Scientific Assessment[M]. Cambridge: Cambridge University, 1990: 195-238.

[9]Hurrell J W. Influence of variations in extratropical wintertime teleconnections on Northern-Hemisphere temperature[J]. Geophys Res Lett, 1996, 23(6): 665-668.

[10] Jones P D, New M, Parker D E, et al. Surface air temperature and its changes over the past 150 years[J]. Rev Geophys,1999, 37(2): 173-199.

[11] Wallace J M, Zhang Y, Renwick J A. Dynamic contribution to hemispheric mean temperature trends[J]. Science, 1995, 270(5237):780-783.

[12] Thompson D W J, Wallace J M, Hegerl G C. Annular modes in the extratropocal circulation. Part Ⅱ: Trends[J]. J Climate, 2000, 13(5): 1018-1036.

[13] Hartmann D L, Wallace J M, Limpasuvan V, et al. Can ozone depletion and greenhouse warming interact to produce rapid climate Change?[J]. Proc Nat Acad Sci, 2000, 97(4): 1413-1417.

[14] Shindel D T, Miller R L, Schmidt G A, et al. Simulation of recent northern climate trends by greenhouse-gas forcing [J]. Nature, 1999, 399: 452-455.

[15] Langematz U, Kunze M, Kruger K, et al. Thermal and dynamical changes of the stratosphere since 1979 and their link to ozone and CO2 changes[J]. J Geophs Res, 2003, 108: 10.1029/2002JD0002069.

[16] Gillett N P, Myles R A, Mcdonald R E, et al. The role of stratospheric resolution in simulating the Arctic Oscillation response to greenhouse gases[J]. J Geophys Res, 2002, 107: 10. 1029/2001JD000589.

[17] Polvani L M, Kushner P. Tropospheric response to stratospheric perturbations in a relatively simple general circulation model[J]. Geophys Res Lett, 2002, 29: 10.1029/2001GL014284.

[18] Kushner P, Polvani L. Stratosphere-troposphere coupling in a relatively simple agcm: The role of eddies[J]. J Climate, 2004, 17: 629-639.

[19] Randel W J, Wu F. Cooling of the Arctic and Antarctic polar stratosphere due to ozone depletion[J]. J Climate, 1999, 12: 1467-1479.

[20] Hu Y, Tung K K. Possible ozone induced long-term changes in planetary wave activity in later winter[J]. J Climate, 2003, 16: 3027-3038.

[21] Chen Wen, Huang Ronghui. The propagation and transport effect of planetary waves in the Northern Hemisphere winter[J]. Adv Atmos Sci, 2002, 19(6): 1113-1126.

[22] 管树轩, 王盘兴, 麻巨慧, 等. 北半球10 hPa极地涡旋环流指数定义及分析[J]. 高原气象, 2009, 28(4): 777-785.

[23] 郑彬, 陈月娟, 施春华. 平流层臭氧纬向分布季节变化和行星波的关系[J]. 高原气象, 2006, 25(3): 366-374.

[24] 郑光, 吴统文, 贺慧霞, 等. 北半球臭氧总量与平流层环流关系的分析[J]. 高原气象, 1991, 10(3): 277-286.

[25] 郑明华, 付遵涛, 陈哲. 北极臭氧损耗对东亚中高纬地区初春地面气温影响的转折点分析[J]. 高原气象, 2010, 29(2): 412-419.

[26] 所玲玲, 黄嘉佑, 谭本馗. 北极涛动对我国冬季同期极端气温的影响研究[J]. 热带气象学报, 2008, 20(2): 163-168.

[27] 琚建华, 任菊章, 吕俊梅. 北极涛动年代际变化对东亚北部冬季气温增暖的影响[J]. 高原气象, 2004, 23(4): 429-434.

[28] 郭品文, 朱乾根, 刘宣飞. 北半球春季大气臭氧年际变化特征及其对大气温度和环流场的影响[J]. 高原气象, 2001, 20(3): 245-251.
 
[1] 保云涛, 游庆龙, 谢欣汝. 青藏高原积雪时空变化特征及年际异常成因[J]. 高原气象, 2018, 37(4): 899-910.
[2] 曹杨, 陈洪滨, 李军, 苏德斌. 利用再分析与探空资料对0℃层高度和地面气温变化特征及其相关性的分析[J]. 高原气象, 2017, 36(6): 1608-1618.
[3] 宋燕, 李智才, 肖子牛, 张菁, 李宏毅, 朱玉祥. 太阳活动与高原积雪及东亚环流的年代际相关分析[J]. 高原气象, 2016, 35(5): 1135-1147.
[4] 除多, 杨勇, 罗布坚参, 边巴次仁. MERRA再分析地面气温产品在青藏高原的适用性分析[J]. 高原气象, 2016, 35(2): 337-350.
[5] 张涛, 苗春生, 王新. LAPS与STMAS地面气温融合效果对比试验[J]. 高原气象, 2014, 33(3): 743-752.
[6] 陶云1,黄玮2,郑建萌2,邢冬1,何华3,何群2. 云南冬季降水的演变特征及成因分析[J]. 高原气象, 2014, 33(1): 130-139.
[7] 何媛1-2,杨若文2,文军1,曹杰2. 北半球春季雪盖对云南5月降水的影响[J]. 高原气象, 2013, 32(6): 1712-1719.
[8] 孙玉婷,高庆九,闵锦忠. 再分析温度资料与西藏地区冬、夏季观测气温的比较[J]. 高原气象, 2013, 32(4): 909-.
[9] 李瑞青1-2,吕世华1,韩博1,高艳红1. 青藏高原东部三种再分析资料与地面气温观测资料的对比分析[J]. 高原气象, 2012, 31(6): 1488-1502.
[10] 熊光明1, 陈权亮1-2, 朱克云1, 范广洲1. 平流层极涡变化与我国冬季气温\, 降水的关系[J]. 高原气象, 2012, 31(4): 1001-1006.
[11] 金巍, 任国玉, 曲岩. 1961-2008年东北三省地面气压变化特征[J]. 高原气象, 2011, 30(6): 1661-1667.
[12] 帅嘉冰-;郭品文;庞子琴. 中国冬季降水与AO关系的年代际变化[J]. 高原气象, 2010, 29(5): 1126-1136.
[13] 郑明华;付遵涛*;陈哲. 北极臭氧损耗对东亚中高纬地区初春地面气温影响的转折点分析[J]. 高原气象, 2010, 29(2): 412-419.
[14] 周雅清-;任国玉. 城市化对华北地区最高, 最低气温和日较差变化趋势的影响[J]. 高原气象, 2009, 28(5): 1158-1166.
[15] 管树轩;王盘兴;麻巨慧;李丽平. 北半球10 hPa极地涡旋环流指数定义及分析[J]. 高原气象, 2009, 28(4): 777-785.
img

QQ群聊

img

官方微信