Please wait a minute...
高级检索
高原气象  2014, Vol. 33 Issue (2): 301-312    DOI: 10.7522/j.issn.1000-0534.2014.00002
论文     
青藏高原不同时间尺度植被变化特征及其与气候因子的关系分析
王青霞1,2, 吕世华1, 鲍艳1, 马迪1, 李瑞青1,2
1. 中国科学院寒区旱区环境与工程研究所 寒旱区陆面过程与气候变化重点实验室, 兰州 730000;
2. 中国科学院大学, 北京 100049
Characteristics of Vegetation Change and Its Relationship with Climate Factors in Different Time-Scales on Qinghai-Xizang Plateau
WANG Qingxia1,2, LÜ Shihua1, BAO Yan1, MA Di1, LI Ruiqing1,2
1. Key Laboratory of Land surface Process and Climate Change in Cold and Arid Regions, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(7141 KB)  
摘要:

利用1982-2006年GIMMS NDVI数据,以多种统计方法为基础,探讨了青藏高原(下称高原)不同时间尺度(年际、季节及月)植被变化的时空特征及其与气候因子的关系。结果表明:高原整体年平均NDVI变化呈波动上升趋势,其中夏季趋势最大,达0.004(10a)-1。不同覆盖度像元变化对总体植被变化的贡献不同,低植被覆盖像元变化对各季节总体植被变化贡献均较大,其中冬季最大;中等植被覆盖像元变化的贡献主要在秋季;高植被覆盖像元的贡献则夏季最明显。青藏高原植被变化存在显著的空间差异,其中夏季呈增加和减少趋势的面积均最大,分别达30.51%,10.52%,增加的区域主要位于高原东部,减少的区域主要在高原中部的藏北高原。进一步分析高原植被和气候因子的相关性表明,中等植被覆盖区植被与气候因子的相关性最高,其次是高植被覆盖区,低植被覆盖区的相关性则最低。在年际和季节尺度上,植被生长主要与温度和降水的累积效应有关,其中在植被生长较好的季节和区域更明显。而在月尺度上,中低植被覆盖区植被生长受短期降水事件影响较大,高植被覆盖区则仍是温度的累积效应占主导。

关键词: 青藏高原NDVI气候因子    
Abstract:

Using GIMMS NDVI data in the Qinghai-Xizang Plateau(QXP) from 1982 to 2006 and multiple statistical methods, the temporal and spatial characteristics of vegetation change and the relationships between NDVI and climate factors at different time scales (annual, seasonal and monthly) are analyzed. An increasing trend of annual mean NDVI has been shown over QXP. Among all the season, the largest trend of NDVI is in summer, which is about 0.004 per decade. The contribution of different coverage pixel is varied. The pixel change of low vegetation cover dominated the overall change in vegetation, and the largest contribution happens in winter. The pixel change of moderate vegetation cover is significant in autumn, the pixel change of high vegetation cover is more obvious in summer. The change of vegetation cover is not only in temporal, but also in spatial over QXP. The area of increasing and decreasing accounted for 30.51% and 10.52% respectively in summer. Increase region mainly located in the eastern QXP and decrease region located in the northern QXP. With correlation analysis between NDVI and climate factors, the region covered by moderate vegetation has the most relevant to climate factors, followed by the region of high vegetation coverage, and the lowest correlation is in low vegetation coverage area. In the annual and seasonal scales, the cumulative effect of temperature and precipitation controlled vegetation growth in QXP, which is more obvious in vegetation growth well seasons and areas. In monthly scale, vegetation growth in low-moderate vegetation coverage influenced by short-time precipitation events, and the region covered by high vegetation is still dominated by the accumulative effect of temperature.

Key words: Qinghai-Xizang Plateau    NDVI    Climate factor
收稿日期: 2013-07-27 出版日期: 2014-04-24
:  P461+.7  
基金资助:

国家重点基础研究发展计划(973计划)项目(2010CB950503);国家重大科学研究计划(2013CB956004);国家自然科学基金项目(41130961,41205076)

作者简介: 王青霞(1988-),女,云南保山人,硕士研究生,主要从事青藏高原植被变化对气候变化的响应 E-mail:wangqingxia@lzb.ac.cn
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

王青霞, 吕世华, 鲍艳, 马迪, 李瑞青. 青藏高原不同时间尺度植被变化特征及其与气候因子的关系分析[J]. 高原气象, 2014, 33(2): 301-312.

WANG Qingxia, LÜ Shihua, BAO Yan, MA Di, LI Ruiqing. Characteristics of Vegetation Change and Its Relationship with Climate Factors in Different Time-Scales on Qinghai-Xizang Plateau. PLATEAU METEOROLOGY, 2014, 33(2): 301-312.

链接本文:

http://www.gyqx.ac.cn/CN/10.7522/j.issn.1000-0534.2014.00002        http://www.gyqx.ac.cn/CN/Y2014/V33/I2/301

[1] Liu X D, Chen B D. Climatic warming in the Tibetan Plateau during recent decades[J]. Int J Climatol, 2000, 20(14): 1729-1742.

[2] 吕少宁, 李栋梁, 文军, 等. 全球变暖背景下青藏高原气温周期变化与突变分析[J]. 高原气象, 2010, 29(6): 1378-1385.

[3] 郑度. 青藏高原自然地域系统研究[J]. 中国科学(D辑), 1996, 26(4): 336-341.

[4] 于海英, 许建初. 气候变化对青藏高原植被影响研究综述[J]. 生态学杂志, 2009, 28(4): 747-754.

[5] 于伯华, 吕昌河. 青藏高原高寒区生态脆弱性评价[J]. 地理研究, 2011, 30(12): 2289-2295.

[6] 董玉祥. 青藏高原沙漠化研究的进展与问题[J]. 中国沙漠, 1999, 19(3): 251-255.

[7] 李森, 董玉祥, 董光荣, 等. 青藏高原土地沙漠化区划[J]. 中国沙漠, 2001, 21(4): 418-427.

[8] 胡光印, 董治宝, 逯军峰, 等. 黄河源区沙漠化及其景观格局的变化[J]. 生态学报, 2011, 31(14): 3872-3881.

[9] 胡光印, 董治宝, 逯军峰, 等. 黄河源区 1975-2005 年沙漠化时空演变及其成因分析 [J]. 中国沙漠, 2011, 31(5): 1079-1086.

[10] 胡光印, 董治宝, 逯军峰, 等. 近30a来长江源区沙漠化时空演变过程及其成因分析[J]. 干旱区地理, 2011, 34(2): 300-308.

[11] 吕世华, 陈玉春. 西北植被覆盖对我国区域气候变化影响的数值模拟[J]. 高原气象, 1999, 18(3): 416-424.

[12] 范广州, 华维, 黄先伦, 等. 青藏高原植被变化对区域气候影响研究进展[J]. 高原山地气象研究, 2008, 28(1): 73-80.

[13] 赵林, 陈玉春, 吕世华, 等. 青藏高原夏季下垫面植被变化气候效应的数值模拟[J]. 安徽农业科学, 2010, 38(30): 17067-17084.

[14] 张少波, 陈玉春, 吕世华, 等. 青藏高原植被变化对中国东部夏季降水影响的模拟研究[J]. 高原气象, 2013, 32(5): 1236-1245, doi: 10.7522/j.issn.1000-0534.2012.00119.

[15] 范广洲, 程国栋. 影响青藏高原植被生理过程与大气 CO\-2 浓度及气候变化的相互作用[J]. 大气科学, 2002, 26(4): 509-518.

[16] 徐满厚, 薛娴. 气候变暖对高寒地区植物生长与物候影响分析[J]. 干旱区资源与环境, 2013, 27(3): 137-141.

[17] 徐满厚, 薛娴. 青藏高原高寒草甸夏季植被特征及对模拟增温的短期响应[J]. 生态学报, 2013, 33(7): 2071-2083.

[18] Myneni R B, Keeling C D, Tucker C J, et al. Increased plant growth in the northern high latitudes from 1981 to 1991[J]. Nature, 1997, 386(6626): 698-702.

[19] 方精云, 朴世龙, 贺金生, 等. 近 20 年来中国植被活动在增强[J]. 中国科学(C 辑), 2003, 33(6): 554-565.

[20] 马明国, 王建, 王雪梅. 基于遥感的植被年际变化及其与气候关系研究进展[J]. 遥感学报, 2006, 10(3): 421-431.

[21] Zhong L, Ma Y M, Salama M S, et al. Assessment of vegetation dynamics and their response to variations in precipitation and temperature in the Tibetan Plateau[J]. Climatic Change, 2010, 103(3-4): 519-535.

[22] 梁四海, 陈江, 金晓媚, 等. 近 21 年青藏高原植被覆盖变化规律[J]. 地球科学进展, 2007, 22(1): 33-40.

[23] 张戈丽, 欧阳华, 张宪洲, 等. 基于生态地理分区的青藏高原植被覆被变化及其对气候变化的响应[J]. 地理研究, 2010, 29(11): 2004-2016.

[24] 王根绪, 李元寿, 王一博, 等. 青藏高原河源区地表过程与环境变化[M]. 北京: 科学出版社, 2010: 240-244.

[25] 陈世强, 文莉娟, 吕世华, 等. 黄河上游玛曲县植被指数与气候变化研究[J]. 冰川冻土, 2007, 29(1): 131-136.

[26] Zhou D W, Fan G Z, Huang R H. Interannual variability of the normalized difference vegetation index on the Tibetan Plateau and its relationship with climate change[J]. Adv Atmos Sci, 2007, 24(3): 474-484.

[27] Zhang B C, Cao J J, Bai Y F, et al. Effects of rainfall amount and frequency on vegetation growth in a Tibetan alpine meadow[J]. Climatic Change, 2013, 118(2): 197-212.

[28] Tucker C J, Pinzon J E, Brown M E, et al. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data[J]. Int J Remote Sens, 2005, 26(20): 4485-4498.

[29] Bachelet D, Neilson R P, Lenihan J M, et al. Climate change effects on vegetation distribution and carbon budget in the United States[J]. Ecosystems, 2001, 4(3): 164-185.

[30] Ma M G, Veroustraete F. Interannual variability of vegetation cover in the Chinese Heihe River Basin and its relation to meterological parameters [J]. Int J Remote Sens, 2006, 27(22): 5127-5127.

[31] Holben B N. Characteristics of maximum-value composite images from temporal AVHRR data[J]. Int J Remote Sens, 1986, 7(11): 1417-1434.

[32] 中国科学院中国植被图编辑委员会. 中国植被图集1∶1000000[C]. 北京: 科学出版社, 2001.

[33] 黄嘉佑. 气象统计分析与预报方法[M]. 北京: 气象出版社, 2004: 1-296.

[34] 魏凤英. 现代气候统计诊断与预测技术[M]. 北京: 气象出版社, 2007: 1-298.

[35] 施雅风, 沈永平, 李栋梁, 等. 中国西北气候由暖干向暖湿转型的特征和趋势探讨[J]. 第四纪研究, 2003, 23(2): 152-164.

[36] 韦志刚, 黄荣辉, 董文杰. 青藏高原气温和降水的年际和年代际变化[J]. 大气科学, 2003, 27(2): 157-170.

[37] 戴升, 申红艳, 李林, 等. 柴达木盆地气候由暖干向暖湿转型的变化特征分析[J]. 高原气象, 2013, 32(1): 211-220, doi: 10.7522/j.issn.1000-0534.2013.00021.

[38] 毛飞, 唐世浩, 孙涵, 等. 近46年青藏高原干湿气候区动态变化研究[J]. 大气科学, 2008, 32(3): 499-507.

[39] 陈怀亮, 刘玉洁, 杜子璇, 等. 基于卫星遥感数据的黄淮海地区植被覆盖时空变化特征[J]. 生态学杂志, 2010, 29(5): 991-999.

[40] 徐维新, 刘晓东. 春末夏初青藏高原植被对全球变暖响应的区域特征[J]. 高原气象, 2009, 28(4): 723-730.

[41] 周定文, 范广洲, 华维, 等. 我国春季降水与青藏高原东南部冬季归一化植被指数变化的关系[J]. 大气科学, 2009, 33(3): 649-656.

[42] 卓嘎, 李欣, 罗布, 等. 西藏地区近期植被变化的遥感分析[J]. 高原气象, 2010, 29(3): 563-571.

[43] 吕少宁, 文军, 康悦. 黄河源区玛曲草原草场退化原因调查分析[J]. 生态经济, 2011, 235(2): 166-170.

[44] 杨秀海, 卓嘎, 罗布. 藏北高原气候变化与植被生长状况[J]. 草业科学, 2011, 28(4): 626-630.

[45] 张钛仁, 柴秀梅, 李自珍. 中国北方植被覆盖度特征及其与沙尘暴关系[J]. 高原气象, 2010, 29(1): 137-145.

[46] 李晓兵, 陈云浩, 张云霞, 等. 气候变化对中国北方荒漠草原植被的影响[J]. 地球科学进展, 2002, 17(2): 254-261.

[47] Zhang B, Cao J, Bai Y, et al. Effects of rainfall amount and frequency on vegetation growth in a Tibetan alpine meadow[J]. Climatic Change, 2012, 118(2): 1-16.

[1] 刘菊菊, 游庆龙, 王楠. 青藏高原夏季云水含量及其水汽输送年际异常分析[J]. 高原气象, 2019, 38(3): 449-459.
[2] 陈月, 李跃清, 范广洲, 陈宇航. 青藏高原大气蕴含潜热时空分布特征研究[J]. 高原气象, 2019, 38(3): 460-473.
[3] 王奕丹, 胡泽勇, 孙根厚, 谢志鹏, 严晓强, 郑汇璇, 付春伟. 高原季风特征及其与东亚夏季风关系的研究[J]. 高原气象, 2019, 38(3): 518-527.
[4] 郑汇璇, 胡泽勇, 孙根厚, 谢志鹏, 严晓强, 王奕丹, 付春伟. 那曲高寒草地总体输送系数及地面热源特征[J]. 高原气象, 2019, 38(3): 497-506.
[5] 明绍慧, 秦正坤, 黄瑜. 卫星资料揭示的青藏高原对流层上层温度气候演变趋势特征[J]. 高原气象, 2019, 38(2): 264-277.
[6] 杜牧云, 王斌, 肖艳姣, 付志康, 周伶俐. X波段双线偏振雷达青藏高原观测资料质量分析[J]. 高原气象, 2019, 38(2): 278-287.
[7] 常姝婷, 刘玉芝, 华珊, 贾瑞. 全球变暖背景下青藏高原夏季大气中水汽含量的变化特征[J]. 高原气象, 2019, 38(2): 227-236.
[8] 于涵, 张杰, 刘诗梦. 青藏高原地表非绝热加热模态及其与中国北方环流异常的联系[J]. 高原气象, 2019, 38(2): 237-252.
[9] 严晓强, 胡泽勇, 孙根厚, 谢志鹏, 王奕丹, 郑汇璇. 那曲高寒草地长时间地面热源特征及其气候影响因子分析[J]. 高原气象, 2019, 38(2): 253-263.
[10] 余小嘉, 杨胜朋, 蒋熹. COSMIC掩星资料在青藏高原地区的偏差特征[J]. 高原气象, 2019, 38(2): 288-298.
[11] 朱平, 俞小鼎. 青藏高原东北部一次罕见强对流天气的中小尺度系统特征分析[J]. 高原气象, 2019, 38(1): 1-13.
[12] 屠妮妮, 郁淑华, 高文良. 风场对高原涡在河套地区打转影响的初步分析[J]. 高原气象, 2019, 38(1): 66-77.
[13] 胡梦玲, 游庆龙. 青藏高原南侧经圈环流变化特征及其对降水影响分析[J]. 高原气象, 2019, 38(1): 14-28.
[14] 王玉琦, 鲍艳, 南素兰. 青藏高原未来气候变化的热动力成因分析[J]. 高原气象, 2019, 38(1): 29-41.
[15] 刘田, 阳坤, 秦军, 田富强. 青藏高原中、东部气象站降水资料时间序列的构建与应用[J]. 高原气象, 2018, 37(6): 1449-1457.
img

QQ群聊

img

官方微信